

ASX Announcement 8th January 2025

Catalina Resources is an Australian diversified mineral exploration and mine development company.

Directors

Executive Chairman and Company Secretary Sanjay Loyalka

Director Richard Beazley

Director Michael Busbridge

Director Martin Bennett

ASX Code CTN

CONTACT DETAILS

Unit 38 18 Stirling Highway NEDLANDS WA 6009

T +61 8 61181672 **E** info@catalinaresources.com.au

Re-analysis Upgrades Gold and REE Intersections at Laverton

Highlights

Re-analysis of 1m split samples upgrades aircore drill intersections. Best results include:

28m @ 1.09g/t Au from 57m in LVAC049 Includes 1m @ 9.69g/t Au from 61m 9m @ 7,565ppm TREO from 47m in LVAC037

- Large supergene gold anomaly identified on interpreted shear zone
- Follow-up drilling confirms multiple high-grade REE intersections close to Mt. Weld REE Mine

Catalina Resources Ltd (ASX: CTN) ("Catalina" or the "Company") is pleased to announce results of the re-sampling and analysis of mineralized intervals from the aircore drilling completed at the Laverton Project (E38/3697) in September 2024.

Gold Target Area

The re-sampling and analysis have confirmed the intersections reported by the Company in November 2024. Best assay results from analysis of the 1m splits using a Fire Assay method are as follows:

LVAC049 28m @ 1.09g/t Au from 57 Incls: 1m @ 9.69g/t Au from 61m

This broad intersection of supergene gold mineralization with a high-grade zone of 1m @ 9.69g/t Au is within laterite clay but is interpreted to be located directly above the bedrock source of the gold mineralization. Importantly, hole LVAC012 located 50m to the east intersected altered and veined sediments at bottom of hole indicative of a hydrothermal system (Figure 1).

ASX RELEASE. Page 2 of 24

LVAC049 1.09a/t Au 28m @ E 38/3697 0.42g/t Au MAP I VAC047 AREA @ 0.46g/ LVAC009 1m @ 2.42g/t Au LVAC012 3m @ 1.07g/t Au LVAC050 **VAC041** LVAC043 m @ 0.3g/t Au LVAC039: 4m @ 0 CATALINA RESOURCES **Laverton Project** Legend LVAC037: 1m @ 0.17g/t Au LVAC038: Anomalous Gold Intepreted Structural Trend 0 September 2024 Drilling February 2024 Drilling

Figure 1: Lily Pond South gold prospect drill hole location plan showing best gold intersections from the analysis of the 1m split samples. (1m split sample assay results over 0.1g/t Au have been composited with no more than one consecutive metre of dilution).

The re-sampling confirms the broad supergene gold anomaly within the laterite profile identified by the original 4m composite sampling. Significantly the anomaly has a north-south trend parallel to the interpreted strike of the Barnicoat Shear Zone. The broad gold zone intersected in LVAC049 is at the centre of this anomaly and interpreted to be located directly above the bedrock source of the gold mineralization in fresh rock.

Rare Earth Prospects

Re-sampling and analysis of the 1m split samples using the more accurate peroxide fusion method has upgraded the total rare earth element results (TREO). Best assay results are as follows:

ASX RELEASE. Page 3 of 24

9m @ 7,565ppm TREO from 47m in LVAC037 Incls: 4m @ 13,406ppm (1.34%) TREO from 49m

5m @ 4,880ppm TREO from 63m in LVAC044 Incls: 1m @ 10,689ppm (1.06%) TREO from 66m

The re-sampled and assayed intervals contained multiple anomalous intersections in the range from 1,000ppm to 8,500ppm TREO.

The initial focus of the REE exploration at E38/3697 was on a group of point source magnetic anomalies interpreted to be intrusions, possibly related to the Mt.Weld carbonatite located just 2km south of the tenement boundary (Mt.Weld Mineral Resource: 54.7 Mt @ 5.3% TREO⁶). Reconnaissance aircore drilling completed in February intersected very anomalous REE values associated with some of these magnetic features (Figure 2). For example:

LVAC023 3m @ 6794ppm TREO from 28m² Incls: 1m @ 16,426ppm (1.64%) TREO

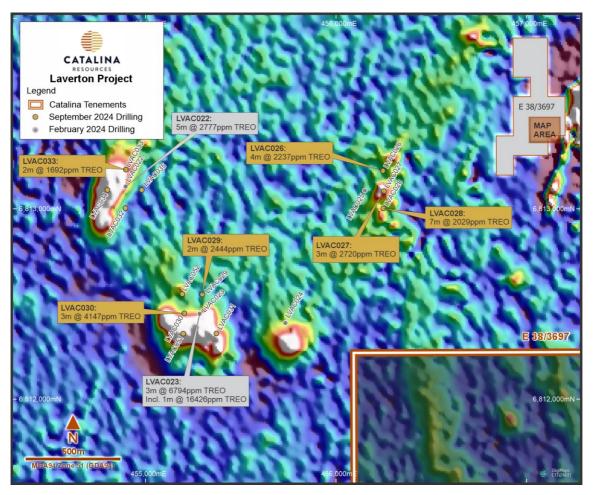


Figure 2: September 2024 aircore holes with REE results from 1m split sample analysis. (1m split sample assay results over 1000ppm TREO have been composited with no more than one consecutive metre of dilution).

Aircore drilling on a grid pattern around three of the original holes has now confirmed the presence of highly anomalous REE values in the laterite profile (Figure 2). The most consistently anomalous results were from holes LVAC026-LVAC028 that were following up hole LVAC025. Best results from LVAC026-LVAC028 include:

LVAC026 1m @ 3179ppm TREO from 28m LVAC026 1m @ 2197ppm TREO from 30m LVAC026 4m @ 2237ppm TREO from 35m LVAC027 3m @ 2720ppm TREO from 32m LVAC028 7m @ 2029ppm TREO from 40m

Unexpectedly, anomalous REE intersections were also returned from the gold target area further south (Figure 3). There are no prominent point source magnetic anomalies in this area but the target is closer to the Mt.Weld carbonatite. The high-grade intersection in hole LVAC037 on the southern reconnaissance aircore traverse is particularly significant with a 4m zone with over 10,000ppm TREO (1%).

9m @ 7,565ppm TREO from 47m in LVAC037 Incls: 4m @ 13,406ppm (1.34%) TREO from 49m

Two additional aircore holes, LVAC027 and LVAC044, are also enriched in the highly sought after heavy rare earth elements (HREO):

2m @ 2429ppm HREO from 33m in LVAC027 1m @ 1701ppm HREO from 38m in LVAC046 CATALINA RESOURCES

ASX RELEASE.

Page 5 of 24

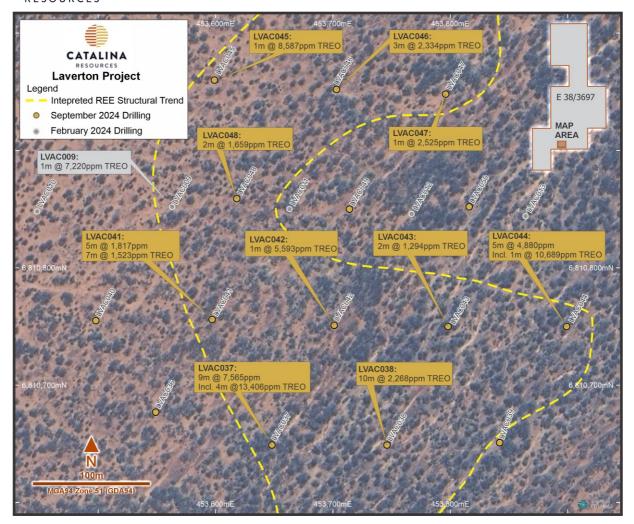


Figure 3: Lily Pond South gold prospect drill hole location plan showing best TREO intersections from the re-analysis of the 1m split samples. (1m split sample assay results over 1000ppm TREO have been composited with no more than one consecutive metre of dilution).

Conclusions & Next Steps

The Company is highly encouraged by the assay results from the follow-up aircore drilling program completed in September, now confirmed with the results from the 1m split re-sampling and analysis detailed in this announcement. The gold intersection of LVAC049 28m @ 1.09g/t Au from 57m includes 1m @ 9.69g/t Au from 61m is considered very significant because it supports the visual observations of veining and alteration logged in bottom of hole samples.

The September drill program in-filled the drill spacing from 100m to 50m to better define the location of the mineralized trend. The broader intersection and higher gold grades suggest that hole LVAC049 is close to the bedrock source of the gold mineralization and will assist with future targeting of drilling.

ASX RELEASE. Page 6 of 24

The Company considers the supergene mineralization intersected in the laterite is indicative of deeper sulphidic gold mineralization in the bedrock that has not been adequately tested previously. Previous drilling has failed to adequately explain the supergene gold mineralization.

Catalina has commenced planning for a program of drilling to test the source of the gold mineralization. The structural and lithological control of the mineralization is not known but it is considered to be caused by a fault splay of the Barnicoat Shear Zone that hosts the Lily Pond, Mon Ami and Ida H gold resources to the north.

REE exploration was targeted around a group of point source magnetic anomalies that were interpreted to be intrusions, possibly related to the Mt. Weld carbonatite. Aircore drilling on a grid pattern has confirmed the presence of high grade REE values in the laterite profile.

High grade REE intersections were also returned from the gold target area further south in the range from 1,000ppm to 8,500ppm TREO. There are no prominent point source magnetic anomalies in this area, but the target is closer to the Mt. Weld carbonatite. The source of the REE mineralization is not known because the basement rocks are deeply weathered. However, the drilling was 100m spaced so intrusive dykes related to Mt. Weld carbonatite may be present.

Catalina has also commenced planning for additional extensional drilling for REE mineralization.

Background

E38/3697 is located within the Laverton Gold Province, an exceptionally well-mineralized terrane in the Eastern Goldfields, Western Australia. The region hosts several world class deposits of gold, nickel, and rare earth elements (REE) including Sunrise Dam (>10Moz Au), Granny Smith (>8Moz Au), Wallaby (> 8Moz Au), Windara Nickel (combined 85k tonnes of nickel sulphide) and the Mt Weld REE deposit, one of the highest-grade rare-earth deposits in the world (Mineral Resource of 54.7 Mt @ 5.3% TREO). The Mt Weld (REE) operation is only 2 kms to the south and the Granny Smith gold Mine is 8km to the west (Figure 4).

ASX RELEASE. Page 7 of 24

425,00 Windarra Barn Ida H Brightstar ~ E 38/3697 Beresford Burtville Mt Marven n Granny Smith E38/3697 ┛ Lſ 2 Mt Weld F 38/3698 Keringal 6,800,000mN MGA94 Zone 51 (GDA94) CATALINA Murrin Murrin Sunrise Dam ~ RESOURCE Laverton Projects Legend Catalina Resources Tenement Greenstone Granite Gold Mine Red October Nickel Mine Towns Road Fault 450,000mE

Figure 4: E38/3697 location plan showing gold, nickel and REE mines

The aircore drilling in February and September 2024 targeted areas along strike from the Lily Pond Well Mineral Resource (340kt @ 1.4 g/t Au³) that is hosted by the north-south trending Barnicoat Shear Zone (Figure 5). The shear zone traverses the southwest corner of E38/3697 and is interpreted to link the Lily Pond Well resource with the Mon Ami (1.56Mt @ 1.1g/t Au⁴) and Ida H (630kt @ 1.4 g/t Au⁵) Mineral Resources to the north. In addition, drilling tested REE targets associated with magnetic anomalies.

ASX RELEASE. Page 8 of 24

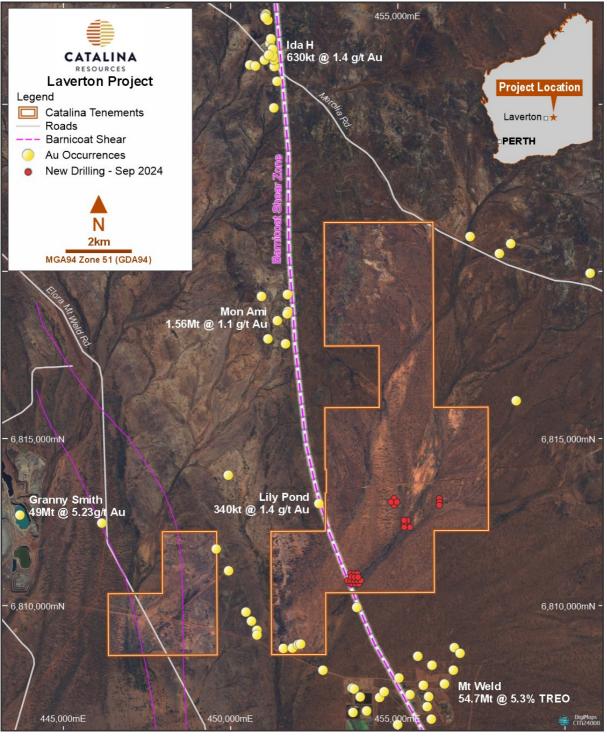


Figure 5: Location of September 2024 drill collars (LVAC0026-52) within E38/3697

The aircore drilling program conducted in September 2024 comprising twenty-seven holes for 1,801m (Figure 5, Appendix 1-5) was completed to in-fill and extend the reconnaissance drilling program conducted in March 2024 that intersected encouraging gold and REE values.

Page 9 of 24

The aircore holes were initially sampled and assayed as 4m composite with results reported on 1st November 2024. Mineralised intervals were then selected for re-sampling and analysis using the 1m sample splits taken during the drill program. The 1m splits were assayed using the Fire Assay method for gold and a peroxide fusion digest for the REE. These assay methods are more accurate than the Aqua Regia/ICP-MS method used for the 4m composite samples and can result in an upgrade the results.

References

This announcement contains information extracted from ASX market announcements reported in accordance with the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" ("2012 JORC Code"). Further details (including 2012 JORC Code reporting tables where applicable) of Mineral Resources and exploration results referred to in this announcement can be found in the following ASX announcements and reports:

¹Catalina Resources Ltd (ASX: CTN) announcement 1st November 2024: Catalina intersects 44m at 1.01g/t gold at Laverton.

²Catalina Resources Ltd (ASX:CTN) announcement 3rd June 2024: Resampling Upgrades Gold and REE Targets at Laverton.

³ Westaway, J., Lily Pond Well Project: Annual Report for period 1 Jan 1999 to 31 Dec 1999. Sons of Gwalia WAMEX Report 1999 (A60870).

⁴ Great Southern Mining Ltd (ASX: GSN) announcement, 21st July 2021; Indicated Mineral Resource Mon Ami.

⁵ Minedex 2003: Ida H Mineral Resource: 630kt @ 1.4 g/t Au.

⁶Duncan R K, Willett G C. 1990. Mt Weld Carbonatite. In Hughes F E (ed). 1990. Geology of the Mineral Deposits of Australia and Papua New Guinea. The Aus IMM. Monograph 14 v1 pp591-597.

Competent Person Statement

The review of historical exploration activities and results contained in this report is based on information compiled by Martin Bennett, a Member of the Australian Institute of Geoscientists (AIG). He is a Director of Catalina Resources Ltd. He has sufficient experience which is relevant to the style of mineralisation and types of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the JORC Code).

Martin Bennett has consented to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The Company confirms that it is not aware of any new information or data that materially affects the information in the original reports, and that the form and context in which the Competent Person's findings are presented have not been materially modified from the original reports.

Where the Company refers to the Mineral Resources in this report (referencing previous releases made to the ASX), it confirms that it is not aware of any new information or data that materially affects the information included in that announcement and all material assumptions and technical parameters underpinning the Mineral Resource estimate with that announcement continue to apply and have not materially changed.

ABOUT CATALINA RESOURCES LIMITED

Catalina Resources Limited is an Australian diversified mineral exploration and mine development company whose vision is to create shareholder value through the successful exploration of prospective gold, base metal, lithium and iron ore projects and the development of these projects into production.

The release of this document to the market has been authorised by the Board of Catalina Resources Ltd.

APPENDIX 1

Aircore Drill Hole Coordinates – September 2024

			MGA	MGA				Depth	Hole	MGA Grid
Tenement	Hole ID	Drill Type	East	North	Inclination	Azimuth	Elevation	(m)	Diameter	ID
E38/3697	LVAC026	AC	456246	6813200	-90	0	450	43	85mm	MGA 94 Z51
E38/3697	LVAC027	AC	456251	6813093	-90	0	450	44	85mm	MGA 94 Z51
E38/3697	LVAC028	AC	456248	6812002	-90	0	450	63	85mm	MGA 94 Z51
E38/3697	LVAC029	AC	455298	6812550	-90	0	450	67	85mm	MGA 94 Z51
E38/3697	LVAC030	AC	455203	6812451	-90	0	450	69	85mm	MGA 94 Z51
E38/3697	LVAC031	AC	455372	6812345	-90	0	450	24	85mm	MGA 94 Z51
E38/3697	LVAC032	AC	454894	6813004	-90	0	450	58	85mm	MGA 94 Z51
E38/3697	LVAC033	AC	454896	6813206	-90	0	450	60	85mm	MGA 94 Z51
E38/3697	LVAC034	AC	454800	6813099	-90	0	450	54	85mm	MGA 94 Z51
E38/3697	LVAC035	AC	454980	6813099	-90	0	450	63	85mm	MGA 94 Z51
E38/3697	LVAC036	AC	453549	6810677	-60	270	450	75	85mm	MGA 94 Z51
E38/3697	LVAC037	AC	453648	6810649	-60	270	450	66	85mm	MGA 94 Z51
E38/3697	LVAC038	AC	453746	6810649	-60	270	450	81	85mm	MGA 94 Z51
E38/3697	LVAC039	AC	453842	6810651	-60	270	450	79	85mm	MGA 94 Z51
E38/3697	LVAC040	AC	453498	6810755	-60	270	450	84	85mm	MGA 94 Z51
E38/3697	LVAC041	AC	453597	6810756	-60	270	450	78	85mm	MGA 94 Z51
E38/3697	LVAC042	AC	453701	6810751	-60	270	450	90	85mm	MGA 94 Z51
E38/3697	LVAC043	AC	453798	6810750	-60	270	450	93	85mm	MGA 94 Z51
E38/3697	LVAC044	AC	453899	6810750	-60	270	450	90	85mm	MGA 94 Z51
E38/3697	LVAC045	AC	453599	6810960	-60	270	450	75	85mm	MGA 94 Z51
E38/3697	LVAC046	AC	453703	6810952	-60	270	450	49	85mm	MGA 94 Z51
E38/3697	LVAC047	AC	453796	6810948	-60	270	450	51	85mm	MGA 94 Z51
E38/3697	LVAC048	AC	453618	6810859	-60	270	450	87	85mm	MGA 94 Z51
E38/3697	LVAC049	AC	453714	6810850	-60	270	450	93	85mm	MGA 94 Z51
E38/3697	LVAC050	AC	453816	6810852	-60	270	450	96	85mm	MGA 94 Z51
E38/3697	LVAC051	AC	455198	6812344	-90	0	450	15	85mm	MGA 94 Z51
E38/3697	LVAC052	AC	455193	6812552	-90	0	450	54	85mm	MGA 94 Z51

ASX RELEASE. Page 12 of 24

Summary of Gold Intersections

Fire Assay analysis of 1m split samples

LVAC033 2m @ 0.29g/t Au from 56m
LVAC037 1m @ 0.17g/t Au from 65m
LVAC038 1m @ 0.21g/t Au from 47m
LVAC038 1m @ 0.19g/t Au from 58m
LVAC038 1m @ 0.23g/t Au from 60m
LVAC038 1m @ 0.11g/t Au from 63m
LVAC038 1m @ 0.34g/t Au from 76m
LVAC038 1m @ 0.16g/t Au from 78m
LVAC039 1m @ 0.16g/t Au from 76m
LVAC039 1m @ 0.3g/t Au from 66m
LVAC039 2m @ 0.31g/t Au from 72m
LVAC041 2m @ 0.45g/t Au from 53m
LVAC043 1m @ 0.42g/t Au from 76m
LVAC043 3m @ 0.54g/t Au from 78m
LVAC047 1m @ 0.2g/t Au from 45m
LVAC047 1m @ 0.46g/t Au from 48m
LVAC049 4m @ 0.59g/t Au from 46m
LVAC049 2m @ 0.24g/t Au from 51m
LVAC049 28m @ 1.09g/t Au from 57m
Incls. 1m @ 9.69g/t Au from 61m
LVAC050 1m @ 0.25g/t Au from 69m
LVAC050 2m @ 0.81g/t Au from 71m
LVAC050 5m @ 0.69g/t Au from 75m
LVAC050 1m @ 0.2g/t Au from 81m

Summary of TREO Intersections

Peroxide Fusion analysis of 1m split samples

LVAC026 1m @ 3,179ppm TREO from 28m
LVAC026 1m @ 2,197ppm TREO from 30m
LVAC026 4m @ 2,237ppm TREO from 35m
LVAC027 3m @ 2,720ppm TREO from 32m
LVAC028 4m @ 2,429ppm TREO from 40m
LVAC028 2m @ 2,025ppm TREO from 45m
LVAC029 2m @ 2,444ppm TREO from 50m
LVAC030 3m @ 4,147ppm TREO from 56m
LVAC033 2m @ 1,692ppm TREO from 41m
LVAC037 9m @ 7,565ppm TREO from 47m
Incls. 4m @ 13,406ppm TREO from 49m
LVAC038 10m @ 2,268pm TREO from 36m
LVAC041 5m @ 1,817ppm TREO from 35m
LVAC041 7m @ 1,523ppm TREO from 41m
LVAC042 1m @ 5,593ppm TREO from 59m
LVAC043 2m @ 1,294ppm TREO from 75m
LVAC044 5m @ 4,880ppm TREO from 63m
Incls. 1m @ 10,689ppm TREO from 66m
LVAC045 1m @ 8,587ppm TREO from 51m
LVAC046 3m @ 2,334ppm TREO from 36m
LVAC047 1m @ 2,525ppm TREO from 45m
LVAC047 1m @ 1,259ppm TREO from 48m
LVAC048 2m @ 1,695ppm TREO from 51m
LVAC048 1m @ 1,391ppm TREO from 55m

APPENDIX 4

Gold Assay Results – Fire Assay analysis of 1m split samples

BHID	SN	From	То	Au ppm		
LVAC033	10854	56.00	57.00	0.25		
LVAC033	10855	57.00	58.00	0.34		
LVAC033	10856	58.00	59.00	0.08		
LVAC033	10857	59.00	60.00	-0.01		
LVAC037	11113	63.00	64.00	-0.01		
LVAC037	11114	64.00	65.00	0.02		
LVAC037	11115	65.00	66.00	0.17		
LVAC038	11160	44.00	45.00	-0.01		
LVAC038	11161	45.00	46.00	-0.01		
LVAC038	11162	46.00	47.00	0.08		
LVAC038	11163	47.00	48.00	0.21		
LVAC038	11164	48.00	49.00	0.02		
LVAC038	11165	49.00	50.00	-0.01		
LVAC038	11166	50.00	51.00	-0.01		
LVAC038	11167	51.00	52.00	-0.01		
LVAC038	11172	56.00	57.00	-0.01		
LVAC038	11173	57.00	58.00	0.02		
LVAC038	11174	58.00	59.00	0.19		
LVAC038	11175	59.00	60.00	0.03		
LVAC038	11176	60.00	61.00	0.23		
LVAC038	11178	62.00	63.00	0.02		
LVAC038	11179	63.00	64.00	0.11		
LVAC038	11180	64.00	65.00	-0.01		
LVAC038	11192	76.00	77.00	0.34		
LVAC038	11193	77.00	78.00	0.09		
LVAC038	11194	78.00	79.00	0.16		
LVAC038	11195	79.00	80.00	0.1		
LVAC038	11196	80.00	81.00	0.03		
LVAC039	11260	63.00	64.00	-0.01		
LVAC039	11261	64.00	65.00	0.01		
LVAC039	11262	65.00	66.00	-0.01		
LVAC039	11263	66.00	67.00	0.3		
LVAC039	11264	67.00	68.00	0.05		
LVAC039	11269	72.00	73.00	0.48		
LVAC039	11270	73.00	74.00	0.14		
LVAC039	11271	74.00	75.00	0.02		
LVAC039	11272	75.00	76.00	0.08		
LVAC039	11273	76.00	77.00	0.16		
LVAC039	11274	77.00	78.00	0.09		
LVAC041	11411	52.00	53.00	0.06		
LVAC041	11412	53.00	54.00	0.00		
LVAC041	11413	54.00	55.00	0.2		
LVAC041	11414	55.00	56.00	0.08		

LVAC041	11415	56.00	57.00	0.05
BHID	SN	From	То	Au ppm
LVAC043	11595	68.00	69.00	0.05
LVAC043	11596	69.00	70.00	0.1
LVAC043	11597	70.00	71.00	-0.01
LVAC043	11598	71.00	72.00	0.05
LVAC043	11603	76.00	77.00	0.42
LVAC043	11604	77.00	78.00	0.08
LVAC043	11605	78.00	79.00	0.79
LVAC043	11606	79.00	80.00	0.51
LVAC043	11607	80.00	81.00	0.33
LVAC043	11608	81.00	82.00	0.1
LVAC043	11609	82.00	83.00	0.05
LVAC043	11610	83.00	84.00	0.1
LVAC043	11611	84.00	85.00	0.09
LVAC043	11612	85.00	86.00	0.04
LVAC043	11613	86.00	87.00	0.03
LVAC043	11614	87.00	88.00	0.05
LVAC047	11878	44.00	45.00	-0.01
LVAC047	11879	45.00	46.00	0.2
LVAC047	11880	46.00	47.00	0.07
LVAC047	11881	47.00	48.00	0.02
LVAC047	11882	48.00	49.00	0.46
LVAC047	11883	49.00	50.00	0.02
LVAC047	11884	50.00	51.00	0.05
LVAC049	12016	44.00	45.00	0.07
LVAC049	12017	45.00	46.00	0.02
LVAC049	12018	46.00	47.00	0.39
LVAC049	12019	47.00	48.00	1.23
LVAC049	12020	48.00	49.00	0.49
LVAC049	12021	49.00	50.00	0.25
LVAC049	12022	50.00	51.00	0.07
LVAC049	12023	51.00	52.00	0.38
LVAC049	12024	52.00	53.00	0.11
LVAC049	12025	53.00	54.00	0.04
LVAC049	12026	54.00	55.00	0.05
LVAC049	12027	55.00	56.00	0.09
LVAC049 LVAC049	12028	56.00	57.00	0.03
LVAC049 LVAC049	12029 12030	57.00	58.00 59.00	0.36
LVAC049 LVAC049	12030	58.00 59.00	60.00	1.35
LVAC049 LVAC049	12031	60.00	61.00	0.31
LVAC049 LVAC049	12032	61.00	62.00	9.69
LVAC049 LVAC049	12033	62.00	63.00	0.87
LVAC049 LVAC049	12034	63.00	64.00	0.87
LVAC049 LVAC049	12035	64.00	65.00	1.85
LVA0049	12030	04.00	05.00	1.00

ASX RELEASE. Page 15 of 24

BHID	SN	From	То	Au ppm	
LVAC049	12037	65.00	66.00	0.12	
LVAC049	12038	66.00	67.00	0.14	
LVAC049	12039	67.00	68.00	0.21	
LVAC049	12040	68.00	69.00	1.63	
LVAC049	12041	69.00	70.00	0.15	
LVAC049	12042	70.00	71.00	0.83	
LVAC049	12043	71.00	72.00	0.24	
LVAC049	12044	72.00	73.00	0.26	
LVAC049	12045	73.00	74.00	2.37	
LVAC049	12046	74.00	75.00	1.89	
LVAC049	12047	75.00	76.00	1.58	
LVAC049	12048	76.00	77.00	0.44	
LVAC049	12049	77.00	78.00	1.18	
LVAC049	12050	78.00	79.00	0.45	
LVAC049	12051	79.00	80.00	0.62	
LVAC049	12052	80.00	81.00	0.87	
LVAC049	12053	81.00	82.00	0.28	
LVAC049	12054	82.00	83.00	0.28	
LVAC049	12055	83.00	84.00	0.75	
LVAC049	12056	84.00	85.00	0.2	
LVAC049	12057	85.00	86.00	0.02	
LVAC049	12058	86.00	87.00	0.01	
LVAC049	12059	87.00	88.00	0.04	
LVAC050	12133	68.00	69.00	0.1	
LVAC050	12134	69.00	70.00	0.25	
LVAC050	12135	70.00	71.00	-0.01	
LVAC050	12136	71.00	72.00	1.45	
LVAC050	12137	72.00	73.00	0.17	
LVAC050	12138	73.00	74.00	0.04	
LVAC050	12139	74.00	75.00	0.03	
LVAC050	12140	75.00	76.00	0.45	
LVAC050	12141	76.00	77.00	1.84	
LVAC050	12142	77.00	78.00	0.16	
LVAC050	12143	78.00	79.00	0.74	
LVAC050	12144	79.00	80.00	0.28	
LVAC050	12145	80.00	81.00	0.08	
LVAC050	12146	81.00	82.00	0.2	
LVAC050	12147	82.00	83.00	0.04	
LVAC050	12148	83.00	84.00	0.02	

APPENDIX 5

REE Assay Results – Peroxide Fusion analysis of 1m split samples

BHID	SN	From	То	Sc,0,	Y ₂ O ₃	La ₂ O ₂	Ce2O3	Pr2O3	Nd ₂ O ₂	Sm ₂ O ₃	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₂ O ₃	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	TREO
				ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
				10	5	0.5	0.5	0.2	0.5	0.5	0.2	2	0.2	0.5	0.2	0.5	0.2	0.5	0.2	
				ICP304	ICP304	ICP304	ICP304	ICP304	ICP304	ICP304	ICP304	ICP304	ICP304	ICP304	ICP304	ICP304	ICP304	ICP304	ICP304	
LVAC026	10458	28	29	61.4	527.1	469.2	976.9	133.4	557.3	110.8	35.4	113.0	15.2	84.4	16.0	41.8	5.0	27.9	4.3	3179
LVAC026	10460	30	31	61.4	158.8	417.6	851.5	102.8	399.9	69.6	19.5	53.0	6.2	31.6	5.0	11.4	1.4	6.8	0.9	2197
LVAC026	10465	35	36	61.4	95.3	299.1	647.7	80.5	323.0	58.6	16.4	46.1	5.1	24.7	3.7	8.0	0.9	4.6	0.7	1676
LVAC026	10466	36	37	61.4	95.3	329.6	739.1	92.9	367.3	67.3	18.1	48.4	5.5	24.7	3.9	8.6	0.9	4.6	0.7	1868
LVAC026	10467	37	38	61.4	196.9	490.3	1040.1	132.2	530.5	96.3	26.4	73.8	8.1	37.9	6.0	13.2	1.4	6.3	0.9	2721
LVAC026	10468	38	39	61.4	152.4	489.1	1049.5	132.2	532.9	96.9	25.9	71.5	8.1	38.5	5.7	12.6	1.4	6.8	0.9	2686
LVAC027	10505	32	33	61.4	336.6	88.0	678.2	43.8	225.0	65.0	22.7	76.1	11.5	68.3	12.4	33.2	4.6	30.2	4.5	1761
LVAC027	10506	33	34	76.7	2794.0	123.2	274.1	38.9	214.5	82.4	40.1	209.8	39.1	298.5	72.0	224.2	28.8	178.8	28.7	4724
LVAC027	10507	34	35	61.4	914.4	55.7	79.6	21.5	120.1	38.9	17.6	85.3	14.3	102.2	23.4	69.8	8.9	54.1	8.4	1676
LVAC028	10557	40	41	92.0	25.4	59.8	825.8	18.7	71.1	13.3	3.9	9.2	1.4	6.9	1.1	2.9	0.5	2.8	0.5	1135
LVAC028	10558	41	42	76.7	222.3	950.1	1745.2	252.8	928.1	167.0	46.8	119.9	14.3	68.9	9.9	21.2	2.5	14.8	2.0	4643
LVAC028	10559	42	43	76.7	190.5	308.5	577.5	114.2	497.9	105.0	31.0	83.0	10.4	51.7	8.0	18.9	2.3	14.8	2.0	2092
LVAC028	10560	43	44	76.7	241.3	307.3	240.1	111.4	507.2	109.0	33.1	94.5	11.7	59.7	9.6	24.0	3.0	18.2	2.3	1849
LVAC028	10562	45	46	61.4	577.9	222.9	228.4	68.8	313.7	70.8	24.8	92.2	13.4	82.7	17.2	48.0	6.2	35.9	5.7	1870
LVAC028	10563	46	47	61.4	958.9	176.0	116.5	53.1	267.0	69.6	27.3	119.9	19.1	126.3	27.3	78.9	10.0	60.4	9.8	2181
LVAC029	10630	50	51	30.7	69.9	388.3	1074.1	104.6	405.8	70.2	18.1	41.5	4.6	20.7	2.8	6.3	0.7	4.0	0.5	2242
LVAC029	10631	51	52	46.0	101.6	524.3	1089.3	132.2	520.0	94.5	25.0	55.3	6.7	29.8	4.1	9.2	1.1	6.8	0.9	2647
LVAC030	10703	56	57	138.1	63.5	418.8	696.9	70.5	230.9	31.9	8.3	20.8	2.5	12.6	2.1	5.7	0.7	4.0	0.5	1708
LVAC030		57	58	168.7	260.4	2510.2	4041.0	404.9	1329.2	171.7	44.7	108.4	12.4	59.7	9.2	22.3	2.5	14.2	1.8	9161
LVAC030		58	59	122.7	63.5	377.7	633.7	65.8	221.5	30.2	8.6	20.8	2.8	13.2	2.1	5.1	0.7	4.0	0.5	1573
LVAC033	10839	41	42	76.7	50.8	758.9	633.7	158.0	509.5	71.9	17.1	36.9	3.9	15.5	2.1	4.0	0.5	2.3	0.2	2342
LVAC033 LVAC037	10840 11097	42 47	43 48	122.7 122.7	38.1 146.1	285.0 917.3	236.6 1417.3	58.3 165.0	207.5 564.3	34.2 83.5	9.0 21.8	23.1 60.0	2.8 7.1	13.2 35.0	1.8 5.5	4.6 13.2	0.7	4.0	0.5	1042
LVAC037	11097	47	40	122.7	146.1	917.3	2260.6	222.4	504.3 694.9	87.0	21.6	50.7	6.0	28.1	5.5 4.6	10.9	1.6 1.4	8.0	1.6 1.1	3572 5054
LVAC037	11098	40	49 50	107.4	222.3	3108.5		483.3	1527.5	178.6	42.2	106.1	11.7	20.1 54.5	8.3	10.9	2.3	13.1	1.1	10666
LVAC037	11100	49 50	51	107.4	215.9	2873.9		445.9	1399.2	167.0	40.5	96.9	10.8	51.7	7.8	18.3	2.3	12.0	1.6	10000
LVAC037	11101	51	52	122.7	323.9	4844.5	7695.4	752.5	2297.0	274.9	66.9	159.1	18.0	85.0	12.6	29.2	3.2	19.4	2.5	16707
LVAC037	11102	52	53	122.7	342.9	4703.7	7402.6	718.6	2297.0	268.0	66.2	156.8	17.7	83.8	12.0	29.2	3.4	18.8	2.5	16247
LVAC037	11103	53	54	92.0	133.4	914.9	1475.8	146.3	464.1	56.8	14.6	39.2	4.6	25.3	4.4	11.4	1.4	8.5	1.4	3394
LVAC037	11104	54	55	92.0	88.9	300.3	483.7	49.6	164.4	22.0	5.8	16.1	2.1	13.8	2.5	7.4	0.9	6.3	0.9	1257
LVAC037	11105	55	56	76.7	82.6	287.4	469.7	47.3	153.9	19.7	5.3	16.1	2.1	12.6	2.5	6.9	0.9	5.7	0.9	1190
LVAC038	11152	36	37	107.4	120.7	152.5	514.2	58.7	256.5	51.0	13.9	34.6	4.6	25.8	4.4	12.6	1.6	10.8	1.6	1371
LVAC038	11153	37	38	122.7	228.6	369.5	791.8	113.8	478.1	93.4	25.7	66.9	8.5	44.2	7.6	20.0	2.7	17.7	2.5	2394
LVAC038	11154	38	39	122.7	260.4	150.1	352.6	48.7	221.5	47.0	14.8	46.1	6.9	43.6	8.7	25.7	3.4	22.8	3.2	1378
LVAC038	11155	39	40	122.7	158.8	310.8	622.0	99.9	427.9	82.4	23.9	62.3	7.6	36.7	6.2	16.0	2.1	13.7	1.8	1995
LVAC038	11160	44	45	92.0	209.6	113.8	371.3	38.9	181.9	38.3	12.5	39.2	5.5	31.6	6.4	17.7	2.3	15.4	2.3	1179
LVAC038	11161	45	46	122.7	514.4	454.0	819.9	121.7	502.5	96.9	29.2	87.6	12.0	71.8	14.0	40.6	5.5	35.3	5.2	2933
LVAC038	11162	46	47	107.4	247.7	477.4	839.8	111.4	423.3	71.9	19.9	55.3	6.9	39.6	7.3	20.6	2.7	18.2	2.7	2452
LVAC038	11163	47	48	122.7	203.2	1349.0	2530.0	273.9	980.6	133.4	33.1	76.1	8.7	44.2	7.3	20.0	2.7	18.2	2.7	5806
LVAC038	11164	48	49	92.0	177.8	397.6	727.4	85.7	324.1	51.6	13.7	39.2	5.1	31.6	6.0	18.3	2.5	16.5	2.5	1992
LVAC038	11165	49	50	92.0	184.2	170.1	376.0	40.3	162.1	34.2	10.9	34.6	5.3	32.1	6.4	18.3	2.5	16.5	2.5	1188

ASX RELEASE. Page 18 of 24

BHID	SN	From	То	Sc ₂ O ₃	Y ₂ O ₃	La_2O_3	Ce2O3	Pr2O3	Nd ₂ O ₂	Sm ₂ O ₂	Eu ₂ O ₂	Gd ₂ O ₂	Tb ₂ O ₂	Dy ₂ O ₃	Ho ₂ O ₂	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu_2O_3	TREO
				ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
				10	5	0.5	0.5	0.2	0.5	0.5	0.2	2	0.2	0.5	0.2	0.5	0.2	0.5	0.2	
				ICP304	ICP304			-		ICP304	ICP304	ICP304	ICP304	ICP304	-		ICP304		ICP304	
LVAC041	11394	35	36	138.1	50.8	117.3	426.4	75.1	331.1	52.2	13.2	32.3	3.5	14.9	2.1	5.1	0.7	4.6	0.7	1268
LVAC041	11395	36	37	92.0	63.5	106.2	941.7	49.2	221.5	43.5	11.8	27.7	3.5	16.6	2.5	6.3	0.7	5.1	0.7	1593
LVAC041	11396	37	38	92.0	120.7	139.6	1206.4	62.5	276.3	56.8	16.4	41.5	5.3	27.6	4.4	11.4	1.6	9.7	1.4	2074
LVAC041	11397	38	39	92.0	215.9	470.4	944.1	141.6	577.2	106.7	30.1	83.0	9.4	45.3	7.1	17.7	2.1	12.5	1.6	2757
LVAC041	11398	39	40	76.7	266.7	170.1	315.1	65.3	285.7	57.4	16.2	48.4	6.7	38.5	7.1	20.6	2.5	15.4	2.0	1394
LVAC041	11400	41	42	76.7	298.5	260.4	605.6	92.9	398.8	84.7	24.5	69.2	9.9	54.5	9.6	25.2	3.4	19.9	3.0	2037
LVAC041	11401	42	43	76.7	527.1	195.9	315.1	92.2	420.9	100.3	30.8	89.9	14.3	85.5	16.3	45.2	5.9	37.6	5.2	2059
LVAC041	11402	43	44	76.7	489.0	204.1	352.6	90.1	401.1	94.0	28.5	83.0	13.1	79.2	14.7	41.2	5.5	34.7	4.8	2012
LVAC041	11403	44	45	76.7	215.9	109.1	194.4	47.0	209.9	48.1	15.1	43.8	6.4	37.3	7.1	18.9	2.5	14.8	2.3	1049
LVAC041	11404	45	46	92.0	203.2	124.3	272.9	48.9	216.9	48.7	14.8	43.8	6.4	36.2	6.6	18.9	2.3	14.2	2.0	1152
LVAC041	11405	46	47	92.0	158.8	112.0	393.6	47.5	212.2	44.1	13.4	39.2	5.3	29.8	5.3	14.3	1.8	10.8	1.6	1182
LVAC041	11406	47	48	92.0	368.3	107.3	95.5	46.3	216.9	47.0	16.2	57.7	8.7	52.2	10.5	29.2	3.4	19.4	3.0	1174
LVAC042	11496	59	60	122.7	209.6	1278.6	2424.6	266.8	928.1	139.2	35.7	83.0	9.9	48.8	7.8	20.0	2.5	14.2	1.8	5593
LVAC043	11602	75	76	92.0	196.9	271.0	504.8	58.7	220.4	40.6	12.0	36.9	5.1	28.1	5.5	15.4	2.1	12.0	1.8	1503
LVAC043	11603	76	77	107.4	114.3	201.8	367.8	41.7	153.9	26.1	7.6	23.1	3.0	16.6	3.2	9.2	1.1	8.0	1.1	1086
LVAC044	11683	63	64	92.0	114.3	283.9	453.3	47.7	165.6	26.7	7.6	23.1	3.0	19.5	3.7	11.4	1.6	11.4	1.6	1266
LVAC044	11684	64	65	122.7	215.9	951.3	1569.5	154.5	516.5	73.7	19.9	53.0	7.4	40.8	7.3	20.6	3.0	19.9	2.7	3779
LVAC044	11685	65	66	168.7	755.7	1560.1	2811.1	300.8	1072.7	183.3	57.7	170.6	25.1	146.9	25.4	65.8	8.2	48.4	6.6	7407
LVAC044	11686	66	67	138.1	501.7	2721.4	4603.2	469.3	1574.1	225.0	61.6	163.7	20.0	104.5	17.6	44.6	5.7	34.7	4.5	10690
LVAC044	11687	67	68	92.0	165.1	255.7	427.5	45.6	155.1	24.9	7.4	23.1	3.7	24.1	5.0	14.9	2.1	13.7	1.8	1262
LVAC045	11761	51	52	184.1	596.9	1853.3	2904.8	419.0	1667.4	317.8	91.5	251.4	30.6	145.8	22.0	52.6	6.6	38.7	5.2	8588
LVAC046	11821	36	37	138.1	539.8	228.7	363.1	73.5	330.0	78.3	24.5	78.4	12.4	79.8	16.5	48.0	6.4	41.6	5.9	2065
LVAC046	11822	37	38	92.0	692.2	157.2	262.4	56.2	311.3	92.8	32.9	124.5	17.3	108.5	21.3	58.9	7.8	46.7	6.8	2089
LVAC046	11823	38	39	92.0	1295.4	131.4	267.1	38.2	239.0	109.0	47.5	223.7	29.2	171.1	34.4	91.5	11.0	59.8	9.1	2849
LVAC047	11879	45	46	138.1	88.9	631.1	971.0	121.7	415.1	59.2	15.7	39.2	4.6	21.8	3.4	8.0	0.9	6.3	0.9	2526
LVAC047	11882	48	49	92.0	228.6	153.7	425.2	37.9	151.6	31.3	10.4	34.6	5.5	36.2	7.3	21.2	2.7	18.2	2.7	1259
LVAC048	11936	51	52	122.7	273.1	256.9	378.3	87.1	385.9	79.5	24.1	73.8	10.1	58.0	9.9	25.7	3.4	21.1	2.7	1812
LVAC048	11937	52	53	76.7	336.6	244.0	235.4	80.5	338.1	64.4	19.5	57.7	8.3	50.5	9.9	28.6	3.7	22.8	3.2	1580
LVAC048	11940	55	56	61.4	793.8	72.1	26.9	22.2	104.9	27.8	11.8	62.3	10.6	77.5	18.6	54.9	6.6	34.7	5.2	1391
LVAC049	12056	84	85	122.7	387.4	490.3	1099.9	134.6	550.4	110.2	30.3	83.0	10.8	63.1	12.1	34.9	4.8	31.9	4.8	3171
LVAC049	12057	85	86	138.1	336.6	553.7	1229.9	145.1	579.5	105.6	28.3	76.1	9.7	54.5	10.1	29.7	4.1	27.9	3.9	3333
LVAC049	12058	86	87	122.7	412.8	621.7	1253.3	155.6	618.0	115.4	32.2	87.6	11.7	69.5	12.8	36.0	4.8	31.3	4.3	3590

APPENDIX 6:

JORC Code, 2012 Edition – Table 1

Sampling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	 The drilling contractor was Gyro Drilling from Kalgoorlie. Gyro uses 3m drill rods. Holes were drilled to blade refusal unless excess water was intersected. Hole diameter was 85mm / 3.5". Aircore drilling uses a three-bladed steel or tungsten drill bit to penetrate the weathered layer of loose soil and rock fragments. The drill rods are hollow and feature an inner tube with an outer barrel (like RC drilling). Aircore drilling uses small compressors (750 cfm/250 psi) to drill holes into the weathered layer of loose soil and fragments of rock. Compressed air is injected into the space between the inner tube and the drill rods inside wall, which flushes the cuttings up and out of the drill hole through the rod's inner tube, causing less chance of cross-contamination. Gyro used an Air 750 CFM / 250 PSI Sullair Compressor.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse grained material.	 Representative aircore samples were collected at 1m intervals, with drill chips from end of hole placed into chip trays and kept for reference at Catalina's facilities. Most samples above 60m were dry and sample recovery was good. Below 60m samples were commonly wet. Catalina does not anticipate any sample bias from loss/gain of material from cyclone.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged.	 All aircore samples were lithologically logged on paper and later transferred to a digital format using a logging template. Logging is qualitative in nature. All geological information noted above has been completed by a competent person as recognized by JORC.
Sub-sampling techniques and	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc., and	 Aircore sampling was undertaken on 1m intervals using splitter. Most 1m samples above 60m depth were dry and weighed between 0.5 and 1.5kg.

Page 20 of 24

RESOURCES		
sample preparation	whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in- situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	 Samples from the cyclone were laid out in orderly rows on the ground. Using a hand-held trowel, 4m composite samples were collected from the onemetre piles. These composite samples weighed between 1kg and 1.5kg. For any anomalous 4m composite sample assays, the corresponding 1m sample splits was collected and assayed. Quality control of the assaying comprised the insertion of industry (OREAS) standards (certified reference material) every 50th sample. Samples were sent to Bureau Veritas Laboratory in Perth. Samples will be pulverized so that 95% of the sample passes 75µm. A representative sample of the pulp will be assayed by Fire Assay for gold (FA001) and peroxide fusion/ ICP-MS for REE (ICP304).
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis, including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	 REE (ICP304). All assaying will be completed by Bureau Veritas Laboratory. 4m composite samples were assayed by Aqua Regia with ICP-MS, method AR001. The detection limit is 1ppb Au and Aqua Regia with ICP-MS, method AR102 for REE. 1m split samples were assayed by Fire Assay for gold (FA001) and peroxide fusion/ ICP-MS for REE (ICP304). Standards from OREAS were added to the 4m composites every 50th samples. The methods used are considered appropriate for this style of mineralization expected. No density data available. Bureau Veritas routinely re-assay anomalous assays (greater than 0.3 g/t Au) as part of their normal QAQC procedures. Intervals of the 4m composite samples that assay above 0.1g/t Au or 1000ppm REE were re-assayed using the 1m split samples.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	 Verification of significant intersections was undertaken by a second geologist. Validation of 1m assay and 4m composite assay data involves checking of QAQC standard assays. Comparison of assay results between the composite samples and the 1m samples (Fire Assay) have been made when available.

Page 21 of 24

		• Data is entered into a logging template on a desk top computer.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 All aircore drill hole coordinates are in GDA94 Zone 51 (Appendix 1). All aircore holes were located by handheld GPS with an accuracy of +/-5m. There is no detailed documentation regarding the accuracy of the topographic control. No elevation values (Z) were recorded for collars. There were no downhole surveys completed because aircore drill holes were not drilled deep enough to warrant downhole surveying.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 Aircore holes were spaced at 100m intervals along traverses. Some in-fill holes were drilled at 50m spacing. Given the first pass nature of the exploration programs, the spacing of the exploration drilling is appropriate for understanding the exploration potential and the identification of structural controls of the mineralization.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralized structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 The relationship between drill orientation and the mineralized structures is not known at this stage as the prospects are covered by a ~10m blanket of transported cover. It is concluded from field observations that the structures and foliation trends ~160 degrees. Dips are interpreted to be approximately vertical. Azimuths and dips of aircore drilling were aimed to intersect the strike of the rocks at right angles. Downhole widths of mineralization are not known with assays not yet received.
Sample security	The measures taken to ensure sample security.	
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 No sampling techniques or data have been independently audited.

Page 22 of 24

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
<i>Mineral tenement and land tenure status</i>	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 The Laverton Project is located within E38/3697. Catalina holds several Exploration Licenses in the Laverton area. None are contiguous with E38/3697. The project area was culturally surveyed and cleared. There are no registered cultural heritage sites within the area. E38/3697 is held 100% by Catalina Resources. All tenements are secured by the DEMIRS (WA Government). All tenements are granted, in a state of good standing and have no impediments.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The area southeast of Laverton has been explored by multiple companies resulting in the discovery of the Granny Smith Gold Mine and the Mt Weld REE mine. There have been several phases of Aircore and RC drilling within E38/3697. Between the Lily Pond Well and Pendergast South gold prospects drilling has been conducted by exploration companies including: Anglogold Ashanti, Crescent Gold, Acacia, Metex Resources, Placer Exploration and Sons of Gwalia. Previous drilling programs have been primarily of a reconnaissance style focused on the Lily Pond Well and Pendergast South Well areas. Between these gold prospects along the interpreted strike of the Barnicoat Shear the drilling has been sparce. A small gold resource was discovered at Lily Pond Well and a supergene gold zone was discovered at Pendergast Well.
Geology	Deposit type, geological setting and style of mineralization.	 The Laverton Project is located in the Laverton Tectonic Zone, a north-south trending structural domain within the Archean Yilgarn Craton. The eastern half of the zone comprises predominantly of a sedimentary sequence with subordinate mafic volcanics and intrusives. The Barnicoat Shear Zone trends in a NNW direction through the tenement linking the Ida H, Lily Pond Well and Pendergast prospect areas. There is minor deeply weathered exposure in the Lily Pond Well area but the majority of the tenement is covered by ~15m of transported cover that obscures

Page 23 of 24

Criteria	JORC Code explanation	Commentary
		 the bedrock geology. A Proterozoic dyke crosscuts the sequence within the tenement in a NNW direction and is delineated by a prominent magnetic signature. The sequence is also intruded by the circular Mt Weld Carbonatite just to the south of the tenement that hosts REE mineralization.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	 Appendix 1 provides details on the coordinates and specifications of the aircore holes drilled. The documentation for drill hole locations in this announcement are considered acceptable. Consequently, the use of any data obtained is suitable for presentation and analysis. Given the early stage of the exploration programs, the data quality is acceptable for reporting purposes. The exploration assay results for the 4m composites and 1m split samples have been received. Future drilling programs will be dependent on the assays received.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high- grade results and longer lengths of low- grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	 NA. Mineralized intervals reported in this announcement use a cutoff of 100ppb Au (0.1g/t Au) and 1000ppm REE unless otherwise stated. Gold and REE intersections are reported in Appendix 2-3 using weighted averages. In Appendix 2-3 no intervals of below 100ppb Au and 1000ppm REE were used in aggregation of reported intersections. Where aggregate intersections are reported in figures no more than one consecutive metre of dilution is used.
Relationship between mineralization widths and	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralization	 NA The geometry and extent of any mineralization and geology will be provided upon receipt.

Page 24 of 24

Criteria	JORC Code explanation	Commentary
intercept lengths	with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	 Mineralization is interpreted to be steeply dipping and drillholes were drilled at 60 degrees to the west.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Plans of the drill hole locations and tabulation of the assay results are provided in this announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All exploration assay results for the 4m composites and 1m split samples have been received. Exploration results that may create biased reporting have been omitted from these documents. Appendix 1 details aircore drill hole collar coordinates and specifications. Appendix 4-5 tabulates all assays results over 0.1g/t Au and 1000ppm TREO without internal dilution.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 No additional exploration data has been reported.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 Further drilling in E38/3697 is dependent on assessment of the aircore assay results for the 4m composite and 1m split samples. The 4m composite sample assays and analysis of the 1m splits have improved delineation of the gold and REE mineralization. Deeper RC drilling will be required to test the mineralization in fresh rock.