

ASX Announcement 26 February 2025

Catalina Resources is an Australian diversified mineral exploration and mine development company.

Directors Executive Chairman and Company Secretary Sanjay Loyalka

Director Richard Beazley

Director Michael Busbridge

Director Martin Bennett

ASX Code

CTN

CONTACT DETAILS

Unit 38 18 Stirling Highway NEDLANDS WA 6009

T +61 8 61181672 **E** info@catalinaresources.com.au

Exploration Update - Rock Lodge.

Highlights

- A two-hole diamond drilling program was completed in November 2024 at the Rock Lodge Project in NSW.
- The best intersection for gold was 11 m @ 0.88 g/t Au from 193m, including 1 m @ 5.25 g/t Au in SRLRCD001.
- The best multielement assay was 1 m @ 1.37% Zn, 0.41%
 Pb, 7.7 g/t Ag, 44.49 ppm Cd, 17.43 ppm Mo.

Catalina Resources Ltd (ASX: CTN) ("Catalina" or the "Company") advises that multi element assay results from the recently completed diamond drilling at the Rock Lodge Project in the Lachlan Fold Belt, NSW have been received.

Two diamond holes (SRLRCD001-2) (Figure 3) were drilled for a total of 351m (NQ core) to test below previous shallow reverse circulation (RC) drilling that intersected multiple zones of gold mineralization associated with quartz-sulphide veins.

The diamond holes intersected broad zones of alteration with intervals of sulphide veining and quartz-sulphide veining and brecciation hosted by siltstone (Figures 1, 2, 3)

Gold geochemistry from these 2 diamond holes has previously been reported¹. The best intersections were:

- 11 m @ 0.88 g/t Au from 193m, including 1m @ 5.25 g/t Au in SRLRCD001.
- 1 m @ 1.87 g/t Au from 228m in SRLRCD001.
- 1 m @ 1.4 g/t Au from 177m in SRLRCD001.

A best multi element assay of 1 m @ 1.37% Zn, 0.41% Pb, 7.7 g/t Ag, 44.49 ppm Cd, 17.43 ppm Mo was received in hole SRLRCD001, from 210 m to 211 m. In hole SRLRCD002, 0.6 m @ 0.21% Zn, 1.13% Pb, 9.4 g/t Ag, 6.85 ppm Sb, 0.21 g/t Au was intersected from 230.6 m to 231.2 m.

ASX RELEASE. Page 2 of 20

Correlated with the gold intersections in hole SRLRCD001, arsenic, molybdenum, bismuth and antinomy were anomalous, with arsenic peaking at 4.27% and averaging 0.63% over the interval from 193 m to 204 m. Sulphides noted in logging of the core included ubiquitous pyrite, and varying amounts of red brown sphalerite, galena and minor chalcopyrite. The geochemical signature of mineralisation suggests a high temperature hydrothermal fluid may have been responsible, with a possible genetic link to an intrusion at depth.

The diamond holes intersected broad zones of alteration with intervals of sulphide and quartz-sulphide veining, bleaching, and carbonate, hosted by siltstone². The veining is parallel and also crosscuts the foliation in the sediments and suggests the gold mineralization is related to a late brittle deformation event. This brittle deformation is supported by the presence of abundant clast supported angular breccias, with a sulphide rich matrix, regularly noted in the core.

Background

The Rock Lodge Project (EL 9155) covers an area of 163 km² and is located 35 km south of Cooma in the Lachlan Fold Belt, NSW. It is prospective for orogenic, Intrusion Related Gold Systems (IRGS).

The RC drilling campaign completed by the Company in April 2022 at the Rock Lodge prospect intersected significant mineralization³. The drilling was designed to test prioritised targets consisting of extensive and continuous IP chargeability anomalies that are coincident with very anomalous gold and arsenic soil and rock chip geochemistry.

Catalina's RC drilling intersected a wide zone of stacked vertical lenses of polymetallic mineralisation. For example, RC hole SRLRC005 intersected four (4) significant mineralised zones over a width of 24 m, from 75 m to 99 m (including 2 m @ 2.13 g/t Au and another 2 m @ 2.12 g/t Au). At the end of hole at 102 m, rocks were still pervasively hydrothermally altered (pyrite, silica, sericite) suggesting that additional downhole zones may have been intersected if excessive water flows had not stopped the drilling. West of SRLRC005, Catalina's drilling has intersected mineralisation in SRLRC002 including 8 m @ 1.08 g/t Au.

Page 3 of 20

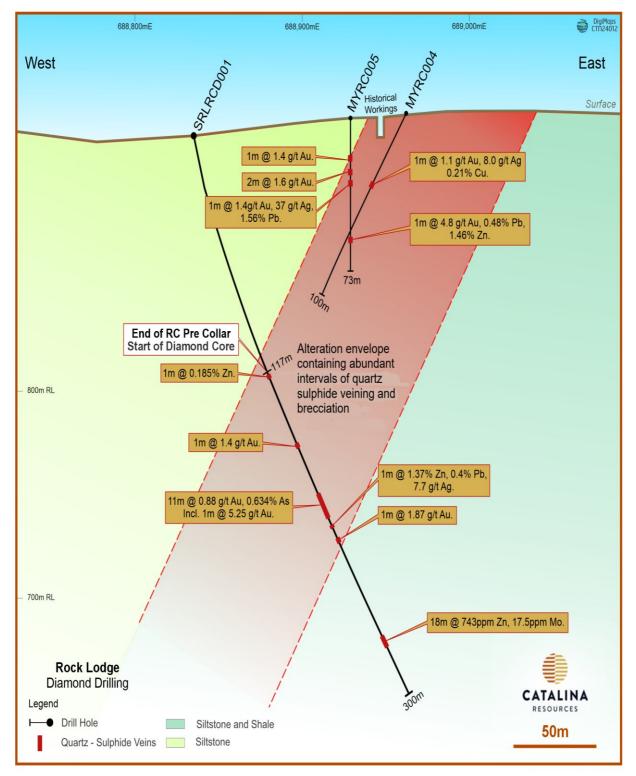


Figure 1: Cross section 5961505N showing Catalina Resources diamond hole SRLRCD001 testing under previous shallow drilling.

Page 4 of 20

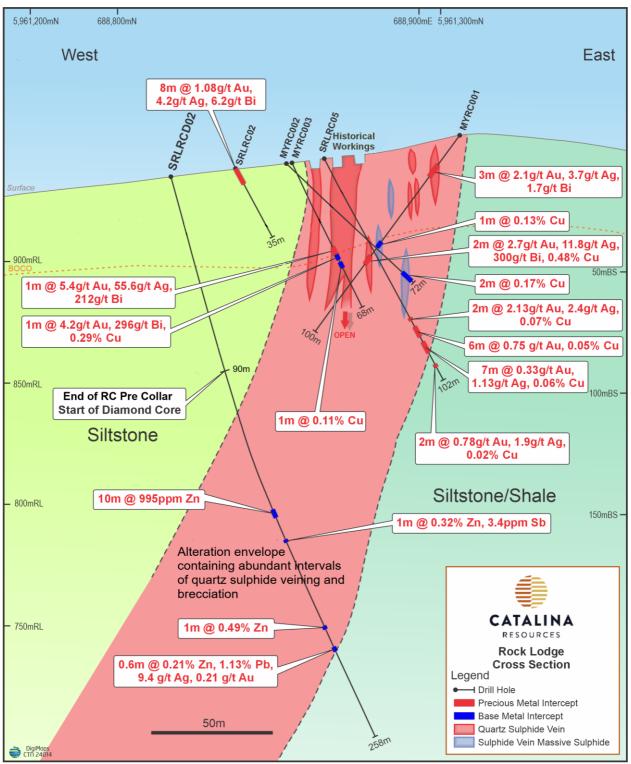


Figure 2: Cross section showing Catalina Resources diamond hole SRLRCD002 testing under previous shallow drilling.

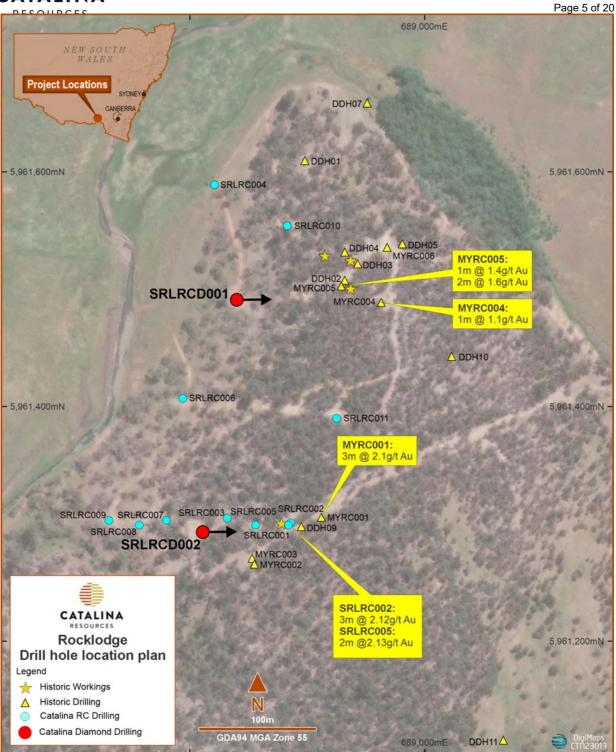


Figure 3: Rock Lodge prospect drill location plan showing Catalina's diamond drilling along with the previous drilling.

References

This announcement contains information extracted from ASX market announcements reported in accordance with the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" ("2012 JORC Code"). Further details (including 2012 JORC Code reporting tables where applicable) of Mineral Resources and exploration results referred to in this announcement can be found in the following ASX announcements and reports:

¹ Catalina Resources Pty Ltd (ASX: CTN) announcement, 30 January 2025, Gold assays received from diamond drilling at Rock Lodge, NSW.

² Catalina Resources Pty Ltd (ASX: CTN) announcement, 29 November 2024. Amendment to ASX announcement - Diamond Drilling intersects broad alteration zones with quartz-sulphide veining and brecciation.

³ Catalina Resources Pty Ltd (ASX: CTN) announcement, 31st May 2022. RC Drilling hits multiple gold,

silver and base metal lenses at Rock Lodge, NSW.

Competent Person Statement

The review of exploration activities and results contained in this report is based on information compiled by Michael Busbridge, a Member of the Australian Institute of Geoscientists (AIG). He is a Director of Catalina Resources Ltd. He has sufficient experience which is relevant to the style of mineralisation and types of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the JORC Code).

Michael Busbridge has consented to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The Company confirms that it is not aware of any new information or data that materially affects the information in the original reports, and that the form and context in which the Competent Person's findings are presented have not been materially modified from the original reports.

Where the Company refers to the Mineral Resources in this report (referencing previous releases made to the ASX), it confirms that it is not aware of any new information or data that materially affects the information included in that announcement and all material assumptions and technical parameters underpinning the Mineral Resource estimate with that announcement continue to apply and have not materially changed.

ABOUT CATALINA RESOURCES LIMITED

Catalina Resources Limited is an Australian diversified mineral exploration and mine development company whose vision is to create shareholder value through the successful exploration of prospective gold, base metal, lithium and iron ore projects and the development of these projects into production.

The release of this document to the market has been authorised by the Board of Catalina Resources Ltd.

Hole	From	То	Assay
SRLRCD001	138	139	1m @ 0.185% Zn
SRLRCD001	210	211	1m @ 1.37% Zn, 0.4% Pb, 7.7 g/t Ag, 44 ppm Cd, 17.4 ppm Mo
SRLRCD001	270	288	18m @ 743 ppm Zn, 17.5 ppm Mo
SRLRCD001	286	288	incl. 2m @ 0.14% Zn, 19 ppm Mo
SRLRCD002	113	114	1m @ 0.15% Zn, 7.65 ppm Sb
SRLRCD002	144	145	1m @ 0.16% Zn
SRLRCD002	158	168	10m @ 955 ppm Zn, 4 ppm Cd
SRLRCD002	167	168	incl. 1m @ 0.28% Zn
SRLRCD002	178	179	1m @ 0.32% Zn, 3.4 ppm Sb
SRLRCD002	204	205	1m @ 0.49% Zn, 22 ppm Cd
SRLRCD002	223	224	1m @ 0.41% Zn, 0.4% Pb, 7.1 g/t Ag, 3.6 ppm Sb
SRLRCD002	230.6	231.2	0.6m @ 0.21% @ Zn, 1.13% Pb, 9.4 g/t Ag, 6.9 ppm Sb, 0.21 g/t Au

APPENDIX 1: Diamond drill hole Multi element anomalous Intersections (exceeding 1000 ppm).

APPENDIX 2:

All Diamond drill hole assay results. All assays in ppm unless indicated by %.

Hole_ID	mFrom	mTo	Au	Ag	As	Bi	Cd	Cu	Мо	Pb	Sb	Zn
SRLRCD001	138	139	<0.01	0.4	23	1.52	5.84	182	0.57	107	1.36	1,815
SRLRCD001	139	140	<0.01	<0.1	20	0.48	1.26	28	0.34	22	0.63	440
SRLRCD001	140	141	<0.01	0.2	29	0.82	0.09	42	0.44	75	0.75	72
SRLRCD001	141	142	0.09	0.3	1,294	1.08	0.31	38	0.29	119	1.2	124
SRLRCD001	142	143	<0.01	<0.1	23	0.33	0.1	43	0.31	21	0.59	70
SRLRCD001	143	144	<0.01	<0.1	19	0.29	0.05	26	0.53	5	0.77	63
SRLRCD001	144	145	<0.01	3.1	97	13.14	0.04	44	0.46	410	2.73	46
SRLRCD001	145	146	0.04	0.3	454	2.33	<0.02	6	1.23	55	1.84	25
SRLRCD001	146	147	0.03	<0.1	442	1.02	<0.02	19	0.88	12	2.43	24
SRLRCD001	147	148	<0.01	<0.1	26	0.56	0.16	26	0.39	3	0.41	97
SRLRCD001	148	149	<0.01	<0.1	18	0.48	0.14	30	0.27	4	1.21	88
SRLRCD001	149	150	<0.01	<0.1	21	0.46	0.04	35	0.34	3	0.77	62
SRLRCD001	150	151	<0.01	0.7	19	2.08	0.46	42	0.72	249	0.32	211
SRLRCD001	151	152	<0.01	0.2	17	0.84	0.31	85	0.92	92	0.66	148
SRLRCD001	152	153	<0.01	<0.1	20	0.53	0.06	45	0.53	4	0.27	75
SRLRCD001	153	154	<0.01	<0.1	25	0.37	0.24	23	0.3	5	0.5	108
SRLRCD001	154	155	<0.01	0.2	35	1.61	0.22	36	0.58	63	0.3	95
SRLRCD001	155	156	< 0.01	0.4	209	3.22	0.06	82	0.55	66	0.56	53
SRLRCD001	156	157	<0.01	0.1	275	1.72	0.05	47	0.36	16	0.6	54
SRLRCD001	157	158	<0.01	<0.1	48	0.68	0.03	55	0.49	4	0.41	56
SRLRCD001	158	159	<0.01	0.5	18	1.95	0.32	90	0.83	103	0.55	134
SRLRCD001	159	160	0.02	<0.1	98	0.88	0.17	64	0.83	14	1.07	93
SRLRCD001	160	161	< 0.01	<0.1	17	0.51	0.08	58	0.74	9	1.22	66
SRLRCD001	161	162	< 0.01	<0.1	12	0.59	0.07	57	1.06	15	0.4	51
SRLRCD001	162	162.75	<0.01	<0.1	9	0.39	0.07	38	0.85	6	0.33	41
SRLRCD001	162.75	163.1	< 0.01	<0.1	6	0.33	0.04	43	1.29	14	0.92	34
SRLRCD001	163.1	164	< 0.01	<0.1	14	0.33	0.06	23	0.59	9	0.55	56
SRLRCD001	164	165	0.04	<0.1	556	0.31	0.03	29	0.44	4	0.42	62
SRLRCD001	165	166	0.56	0.1	660,000	1.19	0.03	59	0.55	18	3.35	70
SRLRCD001	166	167	<0.01	<0.1	86	0.43	0.03	41	0.47	6	0.26	65
SRLRCD001	167	168	0.01	0.3	30	1.01	0.08	63	0.97	58	0.37	69
SRLRCD001	168	169	0.01	<0.1	81	0.3	0.02	47	2.33	15	0.74	30
SRLRCD001	169	170	< 0.01	<0.1	134	0.7	0.04	52	0.55	5	0.35	65
SRLRCD001	170	171	0.1	0.2	1,256	0.83	0.06	44	0.37	29	1.19	78
SRLRCD001	170	172	<0.01	<0.1	47	0.36	0.06	48	0.5	4	0.39	72
SRLRCD001	172	173	<0.01	0.2	17	0.75	0.06	56	0.84	33	0.35	55
SRLRCD001	173	174.15	0.02	0.2	21	0.67	< 0.02	39	0.95	30	0.79	34
SRLRCD001	174.15	175.45	<0.01	<0.1	17	0.54	<0.02	33	0.71	5	0.77	42
SRLRCD001	175.45	176	0.5	0.6	426,000	2.15	0.58	130	0.98	105	3.5	216
SRLRCD001	176	177	0.01	0.1	64	0.66	0.16	60	0.75	14	0.42	75
SRLRCD001	177	177.35	1.42	2.8	1.63%	9.61	2.11	1004	1.33	318	11.4	567
SRLRCD001	177.35	178	1.37	1.1	1.48%	5.68	0.32	194	1.29	178	5.59	122
SRLRCD001	178	179	0.02	0.3	183	1.01	0.22	54	1.08	56	0.44	88
SRLRCD001	179	180	0.01	0.1	28	0.44	0.12	43	1.09	26	0.57	67
SRLRCD001	180	181	< 0.01	<0.1	20	0.46	0.03	44	1.18	19	0.79	40
SRLRCD001	180	182	0.02	<0.1	24	0.42	0.19	56	1.32	7	0.45	92
SRLRCD001	182	183	< 0.01	<0.1	18	0.31	0.16	49	1.1	7	0.27	84
SRLRCD001	182	184	0.01	<0.1	95	0.45	0.10	51	1.17	12	0.42	79
SRLRCD001	184	185	0.48	0.1	404,800	1.47	0.22	91	1.06	21	2.07	88
J			0.10				J.LL	~-			,	55

Catalina Resources Limited ACN: 130 618 683 W: www.catalinaresources.com.au

Page 9 of 20

		_										_
Hole Id	mFrom	mTo	Au	Ag	As	Bi	Cd	Cu	Mo	Pb	Sb	Zn
SRLRCD001	186	187	0.01	<0.1	13	0.69	0.05	67	0.9	7	0.48	45
SRLRCD001	187	188	< 0.01	<0.1	13	0.71	<0.02	54	1.02	4	0.39	32
SRLRCD001	188	189	0.03	0.2	300	1.31	0.08	100	2.44	19	0.72	41
SRLRCD001	189	190	0.02	0.5	130	2.02	0.05	128	6.6	51	0.51	24
SRLRCD001	190	191	0.01	0.6	46	2.4	0.29	107	3.04	73	0.37	82
SRLRCD001	191	192	0.11	0.5	1,488	2.25	0.42	86	7.59	59	1.15	109
SRLRCD001	192	193	0.02	0.2	59	1.34	0.18	51	18.95	26	0.9	52
SRLRCD001	193	194	3.26	0.7	2.61%	5.77	0.91	64	18.31	106	12	256
SRLRCD001	194	195	0.02	0.3	128	1.28	0.28	54	14.94	51	2.98	84
SRLRCD001	195	196	0.02	0.1	76	0.61	0.23	51	19.65	17	3.1	67
SRLRCD001	196	197	<0.01	0.2	27	1.44	0.27	69	23.53	26	2.76	84
SRLRCD001	197	198	0.4	0.3	3136	2.26	0.44	64	27.28	33	3.45	120
SRLRCD001	198	199	< 0.01	0.2	23	2.08	0.29	53	19.98	20	0.67	78
SRLRCD001	199	200	0.02	0.3	17	1.35	0.15	57	15.51	49	1.62	47
SRLRCD001	200	201	0.34	0.6	3378	2.76	0.33	70	16.16	93	7.45	82
SRLRCD001	201	202	< 0.01	0.2	66	1.64	0.32	59	15.37	28	2.2	88
SRLRCD001	202	203	0.33	0.3	3213	2.33	0.15	144	14.09	34	2.45	50
SRLRCD001	203	204	5.25	0.8	4.27%	8.42	0.25	97	11.85	123	18.1	73
SRLRCD001	204	205	0.04	0.1	385	0.8	0.09	36	13.62	13	0.52	27
SRLRCD001	205	206	<0.01	0.3	82	1.24	0.34	32	16.43	65	0.37	95
SRLRCD001	206	207	< 0.01	0.2	163	0.68	0.21	12	14.79	81	1.15	60
SRLRCD001	207	208	<0.01	0.4	38	1.21	0.37	26	18.96	88	1.39	98
SRLRCD001	208	209	0.01	0.6	30	2.15	0.12	106	18.84	130	0.72	57
SRLRCD001	209	210	0.11	0.4	1,472	1.62	0.15	105	16.56	85	0.94	53
SRLRCD001	210	211	< 0.01	7.7	46	16.93	44.49	132	17.43	3,990	1.05	1.37%
SRLRCD001	211	212	0.01	0.1	59	0.91	0.2	53	19.46	28	0.36	69
SRLRCD001	212	213	<0.01	<0.1	155	0.95	0.07	38	17.45	10	0.63	26
SRLRCD001	213	214	<0.01	<0.1	54	1.18	0.06	52	20.3	8	0.5	26
SRLRCD001	214	215	<0.01	<0.1	57	1	0.04	38	19.6	5	0.53	17
SRLRCD001	215	216	<0.01	<0.1	49	0.84	0.33	36	16.7	30	0.66	115
SRLRCD001	216	217	0.01	<0.1	43	1.11	0.09	53	22.9	7	0.95	32
SRLRCD001	217	218	0.03	<0.1	687	1.31	0.6	54	17.69	7	0.71	153
SRLRCD001	218	219	0.02	<0.1	204	1.07	0.04	43	19.03	7	0.82	16
SRLRCD001	219	220	< 0.01	0.1	57	0.94	0.9	62	16.49	12	0.62	253
SRLRCD001	220	221	0.01	0.1	40	0.81	0.54	55	18.25	10	0.7	134
SRLRCD001	221	222	0.01	0.2	38	1.32	0.71	58	21.82	13	0.44	181
SRLRCD001	222	223	< 0.01	0.5	61	2.2	0.04	85	18.21	19	0.44	23
SRLRCD001	223	224	0.04	0.3	379	1.33	0.04	54	18.66	10	0.77	13
SRLRCD001	224	225	0.02	0.2	84	1.08	0.03	82	18.81	9	0.67	14
SRLRCD001	225	226	0.02	0.2	235	1.06	0.04	81	19.75	11	0.87	13
SRLRCD001	226	227	0.02	0.2	43	1.02	0.09	70	19.84	16	0.56	28
SRLRCD001	227	228	0.12	0.5	1,074	1.67	0.05	116	19.12	26	1.12	14
SRLRCD001	228	229	1.87	1	131,000	4.65	0.1	124	19.6	72	5.02	28
SRLRCD001	229	230	0.03	0.1	131	0.96	0.07	56	25.3	11	0.65	17
SRLRCD001	230	231	0.01	0.3	68	1.02	0.1	44	19	18	0.88	20
SRLRCD001	231	232	<0.01	0.4	23	1.4	0.57	38	20.85	27	0.6	111
SRLRCD001	232	233	<0.01	0.3	28	1.27	0.24	36	19.18	28	0.55	60
SRLRCD001	233	234	< 0.01	0.2	23	0.88	0.15	28	17.44	22	0.52	36
SRLRCD001	234	235	< 0.01	0.2	35	0.85	0.2	33	17.34	19	0.63	52
SRLRCD001	235	236	<0.01	0.7	25	1.85	1.32	30	20.79	68	0.64	321
SRLRCD001	235	230	<0.01	0.3	46	1.02	0.4	27	18.09	31	0.36	92
SRLRCD001	230	238	0.01	0.2	90	0.69	0.28	28	21.88	15	0.49	61
SRLRCD001	237	238	< 0.01	0.2	52	0.03	0.28	30	22.87	11	0.49	18
SRLRCD001	238	239	<0.01	<0.1	59	0.33	0.08	30	25.53	11	0.38	49
SRLRCD001	239	240	<0.01	0.1	33	0.47	0.23	44	32.29	12	1.23	63
SUFFICEDODT	240	271	~0.01	0.1	57	0.77	0.20		32.23	1/	1.23	03

Page 10 of 20

	N L O O	URCES			I	1	1		1	l	i i	
Hole Id	mFrom	mTo	Au	Ag	As	Bi	Cd	Cu	Мо	Pb	Sb	Zn
SRLRCD001	242	243	<0.01	0.3	35	0.88	0.22	29	22.09	31	0.78	51
SRLRCD001	243	244	0.01	0.2	62	0.82	0.32	42	23.14	12	0.95	66
SRLRCD001	244	245	<0.01	0.1	30	0.66	0.32	34	23.5	14	0.61	69
SRLRCD001	245	246	<0.01	0.1	34	0.62	0.55	30	21.17	15	0.8	97
SRLRCD001	246	247	0.01	<0.1	47	0.56	0.32	27	20.3	10	1.74	61
SRLRCD001	247	248	<0.01	<0.1	37	0.46	0.55	37	20.84	10	0.8	96
SRLRCD001	248	249	<0.01	0.2	42	0.91	0.69	31	22.49	16	1.06	117
SRLRCD001	249	250	<0.01	0.6	14	2.08	0.38	40	18.69	42	0.59	78
SRLRCD001	250	251	<0.01	0.3	23	1.18	2	32	17.47	20	0.57	369
SRLRCD001	251	252	<0.01	0.2	18	0.89	0.85	44	24.14	18	0.97	148
SRLRCD001	252	253	<0.01	0.4	11	1.33	1.38	39	17.75	25	0.94	240
SRLRCD001	253	254	<0.01	0.3	4	1.19	1.27	46	19.98	22	0.56	213
SRLRCD001	254	255	0.01	2	29	6.02	5.56	172	14.32	117	1.26	870
SRLRCD001	255	256	<0.01	0.3	20	0.72	1.17	35	19.55	23	1	186
SRLRCD001	256	257	<0.01	0.9	21	1.3	3.6	55	19.4	155	1.32	659
SRLRCD001	257	258	<0.01	0.4	14	0.87	2.8	49	18.03	30	0.89	445
SRLRCD001	258	259	0.02	0.3	22	0.95	4.21	62	17.1	15	0.95	681
SRLRCD001	259	260	< 0.01	0.3	8	0.85	1.62	45	20.62	17	1.26	292
SRLRCD001	260	261	< 0.01	0.2	22	0.43	2.21	43	18.89	10	0.81	398
SRLRCD001	261	262	<0.01	0.2	33	0.49	3.35	57	20.37	14	1.48	592
SRLRCD001	262	263	< 0.01	0.3	43	0.95	3.49	96	18.12	16	0.86	565
SRLRCD001	263	264	0.01	0.7	26	3.34	3.62	57	20.75	40	1.57	584
SRLRCD001	264	265	0.01	0.4	18	1.39	1.37	41	20.04	24	1.65	226
SRLRCD001	265	266	0.01	0.3	16	0.65	2.34	47	19.39	23	1.95	342
SRLRCD001	265	267	0.01	0.3	31	0.03	3.23	50	18.25	18	2.52	432
SRLRCD001	267	268	0.02	0.2	35	0.61	3.29	49	17.45	10	1.88	432
SRLRCD001	268	269	0.02	0.2	488	0.01	4.22	49	16.72	14	1.96	574
SRLRCD001	269	205	0.03	0.6	17	1.68	2.31	104	22.98	19	1.27	319
SRLRCD001	205	270	0.02	0.0	25	0.68	7.92	96	19.87	13	1.27	987
SRLRCD001	270	271	0.01	0.4	15	0.08	6.7	62	16.77	5	1.07	732
SRLRCD001	271	272	0.02	0.4	6	0.23	11.35	109	16.11	6	1.12	1,265
SRLRCD001	272	273.9	< 0.04	0.0	16	0.58	7.65	58	18.1	7	1.12	948
SRLRCD001	273.9	273.9	<0.01	0.4		1	3.97	86	18.06	10	1.58	517
					8			44				
SRLRCD001	275	276.00	< 0.01	0.5	2	0.98	5.26		18.44	9	0.93	710
SRLRCD001 SRLRCD001	276 277	277.00	0.01	0.6	17	1.05 0.62	5.09 5.87	135 56	16.69 12.8	9	3.34 1.48	645 746
		278.00							15.51			
SRLRCD001	278	279.00 280.00	0.02	0.4	38	1.22 0.74	4.08	47	15.51	12	2.2	504
SRLRCD001	279		<0.01	0.4	30		6.18	76 52		12	2.25	692
SRLRCD001	280	281.00	< 0.01	0.2	30	0.46	4.11	52	16.03	6	2.26	545
SRLRCD001	281	282.00	<0.01	0.3	38	0.47	5.51	46	17.19	7	1.77	714
SRLRCD001	282	283.00	< 0.01	0.4	25	0.7	6.63	68	21.37	16	1.47	939
SRLRCD001	283	284.00	< 0.01	0.4	34	0.87	2.95	66	18.58	9	1.71	429
SRLRCD001	284	285.00	< 0.01	0.4	10	1.92	0.58	41	17.63	10	1.37	93
SRLRCD001	285	286.00	0.02	0.3	8	1.63	0.55	39	18.03	11	0.92	82
SRLRCD001	286	287.00	0.02	0.3	50	0.67	10.45	78	19.37	16	1.44	1,361
SRLRCD001	287	288.00	0.02	0.2	39	0.44	10.95	85	18.58	12	1.06	1,467
SRLRCD001	288	289.00	0.02	0.1	38	0.47	4.47	58	19.54	8	0.89	673
SRLRCD001	289	290.00	0.1	0.3	17	2.2	0.67	42	16.65	19	0.29	107
SRLRCD001	290	291.00	<0.01	0.2	18	1.3	0.13	52	20.61	14	0.43	20
SRLRCD001	291	292.00	0.02	0.1	96	2.25	0.06	72	17.73	7	0.63	15
SRLRCD001	292	293.00	0.04	<0.1	59	2.15	0.04	49	18.08	5	0.47	13
SRLRCD001	293	294.00	0.01	0.1	30	1.93	0.04	54	18.62	4	1.74	10
SRLRCD001	294	295.00	0.03	0.2	24	3.16	0.06	67	21.16	9	1.07	14
SRLRCD001	295	296.00	0.02	0.2	23	2.19	0.1	96	18.85	11	1.21	18
SRLRCD001	296	297.00	<0.01	0.1	2	1.83	0.2	33	12.72	11	0.92	39
SRLRCD001	297	298.00	<0.01	0.2	18	0.95	0.08	57	16.68	12	1.45	15

Page 11 of 20

Hole Id	mFrom	mTo	Au	Ag	As	Bi	Cd	Cu	Мо	Pb	Sb	Zn
SRLRCD001	299	300.15	<0.01	<0.1	3	1.15	0.57	43	14.01	7	1.02	95
SRLRCD002	94.00	95.00	0.03	1.8	39	9.48	0.17	194	0.84	194	0.68	94
SRLRCD002	95.00	96.00	<0.01	0.3	13	2.1	0.17	43	1.04	47	1.13	121
SRLRCD002	96.00	97.00	0.01	0.2	19	1.87	0.47	33	0.83	39	2.8	250
SRLRCD002	97.00	98.00	0.07	0.4	54	2.52	1.22	169	1.02	64	1.5	252
SRLRCD002	98.00	99.00	0.02	0.2	31	2.07	0.32	90	0.97	25	1.15	99
SRLRCD002	99.00	100.00	<0.01	<0.1	7	0.99	0.32	47	0.62	12	0.85	114
SRLRCD002	107.00	108.17	0.4	0.9	120	3.21	1.78	120	1.42	159	5.76	368
SRLRCD002	108.17	109.00	0.42	1.5	102	4.48	1.6	191	1.93	198	4.02	316
SRLRCD002	109.00	110.05	0.03	0.5	24	1.85	0.28	91	0.74	64	4.15	72
SRLRCD002	110.05	111.00	0.01	0.6	18	1.63	0.69	104	0.73	195	3.53	162
SRLRCD002	111.00	112.00	<0.01	0.2	19	0.44	0.14	53	0.97	16	3.59	61
SRLRCD002	112.00	113.00	<0.01	0.1	20	0.42	1.4	53	0.54	10	2.73	345
SRLRCD002	113.00	114.00	0.02	0.9	39	1.58	6.31	126	1.14	527	7.65	1,465
SRLRCD002	114.00	115.00	0.01	0.2	26	0.23	1	59	0.53	24	3.27	243
SRLRCD002	115.00	116.00	<0.01	0.1	24	0.65	0.46	42	0.94	36	2.53	141
SRLRCD002	116.00	117.00	<0.01	0.4	18	0.7	0.96	60	1.02	125	3.09	242
SRLRCD002	117.00	118.00	0.01	0.6	64	1.27	2.71	95	0.35	107	4.17	573
SRLRCD002	118.00	119.00	0.01	0.5	44	1.16	0.77	70	0.5	133	4.17	184
SRLRCD002	129.40	130.40	< 0.01	<0.1	19	0.19	0.22	28	0.55	9	0.84	105
SRLRCD002	130.40	132.00	0.02	0.4	68	1.27	0.58	51	0.28	98	0.78	159
SRLRCD002	132.00	133.00	<0.01	<0.1	11	0.23	0.67	34	0.5	25	0.31	179
SRLRCD002	133.00	134.00	<0.01	0.5	24	1.67	0.31	78	0.72	67	0.68	122
SRLRCD002	134.00	135.00	<0.01	<0.1	17	0.4	0.23	32	0.33	15	0.39	102
SRLRCD002	135.00	136.00	<0.01	0.1	19	0.48	0.23	32	0.37	23	0.53	216
SRLRCD002			< 0.01	0.1	15	1.42	2.45	65	0.57	50	0.61	522
SRLRCD002	136.00	137.00	0.01	1.2	14	3.34	1.69	65	0.53	257	1.18	378
SRLRCD002	137.00	138.00	< 0.01	0.2		1	2.18	41	0.55	52	0.76	504
SRLRCD002	138.00	139.00			16 21	0.56		33	0.00	4	0.76	140
	139.00	140.00	<0.01	<0.1			0.37					
SRLRCD002	140.00	140.90	< 0.01	0.2	10	1.43	0.17	67	0.54	18	0.5	80
SRLRCD002	140.90	141.40	0.02	3.6	34	19.93	0.09	162	2.87	357	1.19	25
SRLRCD002	141.40	142.00	0.01	1.3	51	7.49	0.12	65	1.74	138	1.01	24
SRLRCD002	142.00	143.00	0.02	1.1	37	6.56	2.73	76	1.11	129	0.76	511
SRLRCD002	143.00	144.00	< 0.01	0.2	6	1.52	0.28	64	0.41	26	0.49	76
SRLRCD002	144.00	145.00	0.1	0.7	288	3.66	6.3	85	0.91	158	1.71	1,629
SRLRCD002	148.50	149.10	0.02	1.3	39	6.27	0.52	62	1	141	0.75	97
SRLRCD002	156.00	157.00	0.02	2.3	35	11.85	0.26	82	0.6	220	1.49	54
SRLRCD002	157.00	158.00	0.01	1.1	18	6.89	0.97	77	0.56	109	0.98	210
SRLRCD002	158.00	159.00	<0.01	0.2	71	1.75	8.84	65	0.76	15	1.03	2,273
SRLRCD002	159.00	160.00	0.03	3.4	287	11.29	3.51	66	1.03	673	1.47	619
SRLRCD002	160.00	161.00	<0.01	1.5	16	7.14	4	44	0.94	230	0.96	744
SRLRCD002	161.00	162.00	<0.01	1.6	11	6.07	2.72	54	0.45	247	1.08	576
SRLRCD002	162.00	163.00	0.06	0.4	538	2.34	5.03	102	0.69	76	3.03	1,324
SRLRCD002	163.00	164.00	0.01	0.4	21	2	0.4	31	0.69	99	1.13	123
SRLRCD002	164.00	165.00	0.02	0.8	18	3.24	2.14	112	0.9	196	3.23	461
SRLRCD002	165.00	166.00	0.01	0.5	10	2.14	1.08	68	0.61	117	0.98	250
SRLRCD002	166.00	167.00	<0.01	0.6	6	2	1.68	60	0.51	160	1.3	383
SRLRCD002	167.00	168.00	0.05	1.3	108	2.5	10.25	100	1.04	180	1.29	2,801
SRLRCD002	168.00	169.00	0.01	1.2	18	6.82	0.48	90	4.16	129	0.34	90
SRLRCD002	169.00	170.00	<0.01	0.7	11	3.06	0.59	42	3.79	81	0.56	126
SRLRCD002	170.00	171.00	0.01	0.1	14	0.68	0.5	43	0.78	26	0.54	133
SRLRCD002	171.00	172.00	0.01	0.3	11	0.82	1.69	62	1.5	110	0.86	364
SRLRCD002	172.00	173.00	0.04	0.2	40	1.09	1.19	40	1.86	41	1.57	288
SRLRCD002	177.00	178.00	0.01	0.5	9	1.26	1.14	44	0.93	116	1.57	261

Page 12 of 20

l	KL30	URCES	I	1	1	1	1	1		i		
Hole Id	mFrom	mTo	Au	Ag	As	Bi	Cd	Cu	Мо	Pb	Sb	Zn
SRLRCD002	179.00	180.00	<0.01	0.1	7	0.75	0.75	50	0.82	17	0.79	190
SRLRCD002	180.00	181.00	<0.01	<0.1	11	0.4	0.15	28	0.83	7	0.44	92
SRLRCD002	186.00	187.00	< 0.01	0.3	25	0.61	0.1	47	0.78	57	0.54	78
SRLRCD002	187.00	188.00	<0.01	<0.1	16	0.16	0.15	74	0.77	10	0.39	100
SRLRCD002	188.00	189.00	< 0.01	0.3	34	0.65	0.26	65	1.09	87	0.64	117
SRLRCD002	189.00	190.00	< 0.01	0.3	80	0.68	1.18	71	1.01	110	2.94	298
SRLRCD002	190.00	191.00	0.02	0.5	190	0.73	7.77	63	2.17	341	2.28	1,926
SRLRCD002	191.00	192.00	<0.01	<0.1	14	0.3	0.91	41	0.61	8	0.95	272
SRLRCD002	192.00	193.00	<0.01	0.3	51	0.66	1.91	127	0.55	22	0.69	487
SRLRCD002	193.00	194.00	<0.01	<0.1	10	0.35	0.11	34	1.55	4	0.42	86
SRLRCD002	194.00	195.00	<0.01	0.2	3	0.48	0.34	44	1.05	60	0.73	126
SRLRCD002	195.00	195.90	0.17	3.5	25	6.71	6.01	132	0.57	938	1.7	1,375
SRLRCD002	195.90	197.00	<0.01	0.2	23	0.69	0.2	56	1.25	22	0.82	95
SRLRCD002	197.00	198	<0.01	<0.1	19	0.37	0.08	36	0.73	8	0.55	70
SRLRCD002	204.00	205	0.02	2.1	3	3.86	22.43	166	1.94	817	1.52	4,920
SRLRCD002	205.00	206	<0.01	0.8	12	1.74	2.06	90	1.11	236	0.83	385
SRLRCD002	214.00	215	<0.01	1.1	11	3.16	4.59	102	0.72	170	1.69	661
SRLRCD002	215.00	216	<0.01	<0.1	7	0.79	0.13	45	1.22	8	0.54	82
SRLRCD002	216.00	217	<0.01	<0.1	9	0.56	0.16	32	3.71	6	0.56	95
SRLRCD002	217.00	218.5	<0.01	0.2	17	0.57	0.22	53	2.56	40	1.26	100
SRLRCD002	218.50	220	<0.01	0.3	9	0.84	0.1	37	0.66	34	2.45	76
SRLRCD002	220.00	221	<0.01	0.1	2	0.8	0.14	43	1.73	12	1.5	84
SRLRCD002	221.00	222	<0.01	0.4	7	1.54	0.11	48	2.48	37	0.64	79
SRLRCD002	222.00	223	<0.01	0.5	8	0.97	0.22	63	1.59	80	1.6	87
SRLRCD002	223.00	224	0.03	7.1	9	12.84	21.34	180	2.71	3,967	3.58	4,064
SRLRCD002	224.00	225	<0.01	0.2	13	0.46	0.15	35	3.74	32	0.81	72
SRLRCD002	225.00	226	<0.01	0.3	20	0.84	0.11	49	2.6	31	1.22	76
SRLRCD002	226.00	227	<0.01	0.1	8	0.66	0.05	113	1.23	7	0.89	64
SRLRCD002	227.00	228	<0.01	0.1	12	0.4	0.09	72	0.97	13	1.27	71
SRLRCD002	228.00	229.5	<0.01	<0.1	15	0.28	0.05	32	5.49	10	0.76	65
SRLRCD002	229.50	230.6	<0.01	0.3	8	0.74	0.08	44	1.45	39	0.95	68
SRLRCD002	230.60	231.2	0.21	9.4	8	3.81	9.4	52	4.5	1.13%	6.85	2,086
SRLRCD002	231.20	232	<0.01	0.3	10	0.49	0.18	46	1.86	68	1.4	82
SRLRCD002	232.00	233	<0.01	0.1	11	0.34	0.06	42	1.44	19	0.86	62
SRLRCD002	233.00	234	<0.01	0.1	14	0.29	0.18	54	8.96	18	1.16	90
SRLRCD002	234.00	235	<0.01	0.1	12	0.26	0.14	47	3.31	19	1.24	89
SRLRCD002	235.00	236	0.03	<0.1	20	0.31	0.11	48	0.87	11	1.46	83
SRLRCD002	236.00	237	<0.01	0.2	16	0.6	0.53	42	1.69	56	1.16	153
SRLRCD002	237.00	238	<0.01	0.1	12	0.47	0.07	44	0.7	23	0.91	81
SRLRCD002	238.00	239	<0.01	<0.1	13	0.38	0.04	47	2.2	5	0.94	65
SRLRCD002	239.00	240	<0.01	<0.1	15	0.44	0.06	49	0.9	7	1.01	71
SRLRCD002	240.00	241	<0.01	0.1	14	0.61	0.11	43	0.68	13	0.8	78
SRLRCD002	241.00	242	<0.01	<0.1	9	0.66	0.08	55	0.75	8	0.73	71
SRLRCD002	242.00	243	<0.01	0.3	8	0.8	0.37	45	1.05	86	0.59	116
SRLRCD002	243.00	244	<0.01	1	7	1.8	3.79	65	3.56	505	1.85	682
SRLRCD002	244.00	245	<0.01	<0.1	8	0.37	0.13	30	0.79	13	0.71	77

ASX RELEASE. Page 13 of 20

APPENDIX 3: JORC Table 1 and Table 2

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralization types (eg submarine nodules) may warrant disclosure of detailed information.	 Catalina Resources has completed two NQ diamond drill holes for 351m at it's Rock Lodge Project, near Cooma NSW. Drilling is located within Catalina's EL9155 and was completed in November 2024. Sampling of the diamond holes was conducted by taking 1m half core samples through mineralized intervals downhole. The core was cut on the orientation line or where the orientation line was not defined the core will be cut 90 degrees to bedding/foliation. The portion of half core selected for analysis was consistent downhole to remove sample bias (right of the orientation line). 1m half core samples have consistent volume and approximately similar weight. Quality control of the assaying comprised the insertion of industry (OREAS) standards (certified reference material) every 40th sample. Samples were sent to SGS laboratories in Orange, NSW. Samples were crushed and then pulverized so that 75% of the sample passes 75µm. A representative sample of the pulp was assayed for gold using Fire Assay. Multielements were assayed by using Aqua Regia followed by ICP-MS analysis.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	 The drilling contractor was BG Drilling from Sydney. BG uses 3m drill rods and a 3m split inner tube. The diamond holes were drilled from RC precollars. SRLRCD001 precollar is 117m and SRLRCD002 is 90m. The RC precollar was cased with HQ rods prior to drilling in NQ mode. NQ diamond core is stored in core trays prior to marking up, logging and sampling.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure	 All diamond core samples are placed at the rig into core trays and stored for future reference. Recovery was good with minor broken core at the start of the diamond tail.

Section 1 Sampling Techniques and Data

Page 1	4	of 2	20
--------	---	------	----

RE	SOURCES	
Criteria	JORC Code explanation	Commentary
	representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse grained material.	 BG drilling uses an NQ triple tube that provides good core recovery. Catalina does not anticipate any sample bias from loss/gain of material from cyclone.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged.	 All diamond core is measured and marked up to check sample recovery on site. Diamond core is logged on paper and later transferred to a digital format using a logging template, on site. Geological logging records lithology, structural texture, alteration and mineralization. Logging is qualitative in nature. All geological information noted above has been completed by a competent person as recognized by JORC. All core was photographed by RME Exploration Services at their sampling facility in Orange, NSW. Core was photographed in both a wet and dry state, prior to cutting. This Photographic record was emailed to Catalina upon completion.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc., and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in- situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	 NQ diamond core was cut with a diamond saw along the orientation line to produce half core for sampling by RME Exploration Services of Orange, NSW. Mineralised intervals of half core were sampled at 1m intervals. 1m of half core weighs 2-3kg. Quality control of the assaying will comprise the insertion of industry (OREAS) standards (certified reference material) every 40th sample. Samples were delivered to SGS laboratories in Orange, NSW using a vehicle supplied by RME Exploration Services of Orange, NSW Samples were crushed and then pulverized so that 95% of the sample passes 75µm. A representative sample of the pulp were assayed for gold by Fire Assay. A sample was also digested with Aqua Regia and assayed by ICP-MS for base metals and multielement analysis.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis,	 Assaying was completed using standard industry practice. All diamond core assaying was completed by SGS Laboratories in Orange, NSW. 1m half core samples were assayed for gold by Fire Assay and base metals and multi elements by Aqua Regia ICP-MS. Elements assayed by Aqua Regia were As, Ag, Cu, Pb, Zn, Cd, Mo, Bi, Sb.

Page 15 of 20

Criteria	JORC Code explanation	Commentary
	including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	 Standards from OREAS were added to the 1m samples every 40th sample. The methods used are considered appropriate for the style of mineralization expected. No density data was captured. SGS routinely re-assay anomalous assays (greater than 0.3 g/t Au) as part of their normal QAQC procedures.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	 Verification of significant intersections was undertaken by a second geologist. Validation of 1m sample assay data involves checking of QAQC standard assays. Data is entered into a logging template on a desk top computer.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 All diamond drill hole coordinates are in GDA94 Zone 55. All diamond holes were located by handheld GPS with an accuracy of +/- 5m. There is no detailed documentation regarding the accuracy of the topographic control. Downhole Surveys of each hole were conducted at regular intervals using a single shot downhole camera to provide the dip and azimuth of the hole trace. Drill hole specifications (collars & surveys) are appended at the end of this JORC table.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 The two diamond holes are spaced on sections 200m apart. The spacing of the diamond drilling is appropriate for understanding the exploration potential and the identification of structural controls of the mineralization. Half core was sampled at 1m intervals with no compositing.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralized structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 The relationship between drill orientation and the mineralized structures is based on surface mapping of strongly weathered exposures. It is concluded from field observations that the structures and foliation trends are approximately 350 degrees. Dips are interpreted to be approximately vertical to steeply west. The azimuth and dip of the diamond holes were aimed to intersect the strike of the rocks at right angles.

I

ASX RELEASE.

Page 16 of 20

	RESOURCES	
Criteria	JORC Code explanation	Commentary
		 Downhole widths of mineralization are provided in appendix 2.
Sample security	The measures taken to ensure sample security.	 All samples are packaged and managed under the supervision of Catalina personnel. Core cutting and sampling was conducted by consulting group RME based in Orange, NSW.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 No sampling techniques or data have been independently audited.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
<i>Mineral tenement and land tenure status</i>	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	•Diamond drill holes were all completed within the granted EL9155 which is 100% owned by Catalina Resources.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The Rock Lodge prospect has been explored by four companies in the last fifty years: Southern Gold, Target Minerals, GFM and Alt Resources. Their exploration programs progressed to RC and diamond drilling, but significant intersections were not followed up, particularly at depth. In addition, consideration was not given to the regional geology away from the old workings and several target areas generated from geochemical and geophysical surveys at Rock Lodge were also not followed up. The mineralisation is associated with massive and disseminated pyrite-arsenopyrite-chalcopyrite-sphalerite sulphides and quartz, within host phyllites and sandstone of the Adaminaby group. This is exposed on the surface as a distinct gossan and ironstone. Sulphide mineralisation is associated with silica alteration and minor quartz veining, indicating that a significant volume of mineralising fluid has passed through the rock. Six RC holes (MYRC001 to MYRC006) were also drilled underneath old workings at Rock Lodge by Alt Resources in 2018. Their drilling also intercepted massive sulphides in four holes with recorded grades up to 5.4 g/t Au.

Page 17 of 20

Criteria	JORC Code explanation	Commentary
		 Geophysical surveys (IP and EM) by Alt Resources in 2016-2017, outlined deeper and parallel targets that were not tested by the drilling program. Several rock chips were taken from the length of this western zone with assays up to 2.52 g/t Au, 10.2 g/t Ag, as well as anomalous arsenic, bismuth and copper. These results stand out from anomalous background levels of 0.2 g/t Au for the remaining rock chip samples. The historical workings at nearby Bobundara have a recorded production of 575g Au (18.5oz) with an average grade of 21 g/t Au (Herzberger and Barnes, 1978). Mining occurred during two periods from 1928-30 and 1948-49. The mineralisation occurs as disseminated sulphide minerals in a narrow, discontinuous quartz-chlorite lode parallel to the host slates' cleavage. The workings consist of 3 or 4 shafts, an adit and shallow pits.
Geology	Deposit type, geological setting and style of mineralization.	 EL9155 covers an area of 75 km² and is located 35km south of Cooma. It is prospective for orogenic, Intrusion Related Gold Systems (IRGS) and skarn related gold mineralisation. The Rock Lodge prospect exhibits high-grade gold mineralisation associated with structurally controlled epigenetic massive sulphide veins. The grades intercepted during historical drilling show the area to be highly mineralised and the mineral assemblages are synonymous with other major mineral deposits within the Canberra to Cooma region of the Lachlan Fold Belt. The East Lachlan Fold Belt has a long history of mineral production including gold (80 Mozs), copper (13 Mt), lead, zinc, silver and tin. It contains several large operating copper and gold mines including Evolution Mining's Lake Cowal Gold Mine, Newcrest Mining Ltd's giant Cadia Mine. Also located within the East Lachlan Fold Belt is Alkane Resources' 2019 Boda discovery (502 metres at 0.2% copper and 0.48 g/t gold from 211 metres). Within the East Lachlan region, a chemical rock sequence has been intruded by various magmas, that create a highly prospective environment for mineralisation. These deposits display a range of different gold mineralisation styles, including orogenic, porphyry, skarn and volcanogenic massive sulphide. While there are similar

ASX RELEASE. Page 18 of 20

Criteria	JORC Code explanation	Commentary
		 mineralisation types across northern Australia, Indonesia, Papua New Guinea, the East Lachlan region is different in age and chemistry, making it globally unique and very prospective. The Rock Lodge Project (EL9155) covers a folded sequence of Ordovician aged Adaminaby Group shales/siltstones and Gungoandra Siltstones. At the Rock Lodge prospect there is a steeply dipping sequence of predominantly siltstone with sandstone interbeds to the west and strongly carbonaceous shales to the east, The siltstones and shales have been locally silicified and disseminated pyrite is common throughout the rocks.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	 Details of the drill collars, depths, azimuths, dips of each hole are provided in ¹ Catalina Resources Pty Ltd (ASX: CTN) announcement, 30 January 2025, Gold assays received from diamond drilling at Rock Lodge, NSW. The data quality is acceptable for reporting purposes. All Assay data has been received and is reported here and in other Catalina announcements. ¹ Catalina Resources Pty Ltd (ASX: CTN) announcement, 30 January 2025, Gold assays received from diamond drilling at Rock Lodge, NSW. ² Catalina Resources Pty Ltd (ASX: CTN) announcement. 29 November 2024. Amendment to ASX announcement-Diamond Drilling intersects broad alteration zones with quartz-sulphide veining and brecciation.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high- grade results and longer lengths of low- grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values	• N/A

ASX RELEASE. Page 19 of 20

Criteria	JORC Code explanation	Commentary
Relationship between mineralization widths and intercept lengths Diagrams	should be clearly stated.These relationships are particularly important in the reporting of Exploration Results.If the geometry of the mineralization with respect to the drill hole angle is known, its nature should be reported.If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').Appropriate maps and sections (with	 The geometry and extent of any mineralization and geology is provided in diagrams in this report. Mineralization is interpreted to be steeply dipping to the west (65-75 degrees) and drillholes were drilled at 60 degrees to the east. This orientation is based upon quartz veins often mapped as parallel to the overriding schistosity, which dips 65-75 west. A plan of the drill hole locations and sectional
	scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	views is provided in this announcement. •All assay results are now available.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 this and previous announcements relating to Rock Lodge by Catalina. ¹ Catalina Resources Pty Ltd (ASX: CTN) announcement, 30 January 2025, Gold assays received from diamond drilling at Rock Lodge, NSW. ² Catalina Resources Pty Ltd (ASX: CTN) announcement. 29 November 2024. Amendment to ASX announcement-Diamond Drilling intersects broad alteration zones with quartz-sulphide veining and brecciation.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 No additional exploration data has been reported.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 Further work is dependent on the assessment of results of the diamond drilling. Following a positive interpretation of the results, additional diamond drilling may be conducted to in-fill and extend the current drilling. The north-south mineralized trend extends under Tertiary basalt to the north. An induced polarization survey may be required to delineate the mineralization prior to drilling.

Diamond drill hole specifications, collars.

Hole_ID	East	North	RL	Pre-collar Depth, m	Depth, m	Dip	Azimuth
SRLRCD001	688835	5961495	912.7	117	300.15	-77	90
SRLRCD002	688807	5961295	923.6	90	258	-75	90

Projection: MGA94, Zone 55.

Diamond drill hole specifications – Survey

Hole_ID	Depth	Dip	Azimuth
SRLRCD001	53	-68.4	82.6
SRLRCD001	95	-66.1	81.7
SRLRCD001	117	-64	79
SRLRCD001	127	-63	77.2
SRLRCD001	144	-62	76
SRLRCD001	161	-61	76
SRLRCD001	214	-61	78
SRLRCD001	253	-59.5	78
SRLRCD001	291	-58	79
SRLRCD002	99	-68	74
SRLRCD002	129	-67	73.5
SRLRCD002	159	-67	74.7
SRLRCD002	189	-66.4	74.6
SRLRCD002	216	-64.5	72.5
SRLRCD002	246	-63	73
SRLRCD002	258	-61.3	72.5